
VMware vSphere Automation SDK for
Python Programming Guide

Modified on 18 JUN 2018
vSphere Automation SDK for Python 6.5
vCenter Server 6.5
VMware ESXi 6.5

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2015-2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

About VMware vSphere Automation SDK for Python Programming Guide 6

Updated Information 7

1 Introduction to the vSphere Automation SDKs 8
vSphere Automation SDKs Overview 8

Supported Programming Languages 10

2 Components of the vSphere Automation Virtualization Layer 11
Components and Services of a Virtual Environment 11

vSphere Deployment Configurations 12

3 Retrieving Service Endpoints 15
Filtering for Predefined Service Endpoints 16

Filter Parameters for Predefined Service Endpoints 17

Connect to the Lookup Service and Retrieve the Service Registration Object 18

Python Example of Connecting to the Lookup Service and Retrieving a Service Registration
Object 18

Retrieve Service Endpoints on vCenter Server Instances 19

Python Example of Retrieving a Service Endpoint on a vCenter Server Instance 20

Retrieve a vCenter Server ID by Using the Lookup Service 20

Python Example of Retrieving a vCenter Server ID by Using the Lookup Service 21

Retrieve a vSphere Automation Endpoint on a vCenter Server Instance 22

Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
22

4 Authentication Mechanisms 23
Retrieve a SAML Token 24

Python Example of Retrieving a SAML Token 25

Create a vSphere Automation Session with a SAML Token 25

Python Example of Creating a vSphere Automation API Session with a SAML Token 26

Create a vSphere Automation Session with User Credentials 27

Create a Web Services Session 28

Python Example of Creating a Web Services Session 28

5 Accessing vSphere Automation Services 30
Access a vSphere Automation Service 30

VMware, Inc. 3

6 Content Library Service 32
Content Library Overview 33

Content Library Types 33

Content Library Items 33

Content Library Storage 34

Querying Content Libraries 35

Listing All Content Libraries 35

Listing Content Libraries of a Specific Type 35

List Content Libraries by Using Specific Search Criteria 36

Content Libraries 36

Create a Local Content Library 37

Publish an Existing Content Library 38

Publish a Library at the Time of Creation 39

Subscribe to a Content Library 40

Synchronize a Subscribed Content Library 42

Editing the Settings of a Content Library 42

Removing the Content of a Subscribed Library 43

Delete a Content Library 44

Library Items 44

Create an Empty Library Item 45

Querying Library Items 46

Edit the Settings of a Library Item 47

Upload a File from a Local System to a Library Item 48

Upload a File from a URL to a Library Item 49

Download Files to a Local System from a Library Item 50

Synchronizing a Library Item in a Subscribed Content Library 52

Removing the Content of a Library Item 52

Deleting a Library Item 52

7 Content Library Support for OVF Packages 53
Using the Content Library Service to Handle OVF Packages 53

Upload an OVF Package from a URL to a Library Item 53

Upload an OVF Package from a Local File System to a Library Item 55

Using the LibraryItem Service to Execute OVF-Specific Tasks 56

Deploy a Virtual Machine or Virtual Appliance from an OVF Package in a Content Library
57

Create an OVF Package in a Content Library from a Virtual Machine 58

8 Tagging Service 60
Creating Tags 60

Creating a Tag Category 61

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 4

Creating a Tag 62

Creating Tag Associations 62

Assign the Tag to a Content Library 63

Assign a Tag to a Cluster 63

Updating a Tag 64

Python Example of Updating a Tag Description 64

9 Virtual Machine Configuration and Operations 66
Filtering Virtual Machines 66

Python Example of Filtering Virtual Machines 67

Create a Virtual Machine 67

Python Example of Creating a Basic Virtual Machine 67

Configuring a Virtual Machine 68

Name and Placement 69

Boot Options 70

Operating System 71

CPU and Memory 72

Networks 74

Performing Virtual Machine Power Operations 76

Python Example of Powering On a Virtual Machine 77

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 5

About VMware vSphere Automation SDK
for Python Programming Guide

VMware vSphere Automation SDK for Python Programming Guide describes how to use the
VMware vSphere Automation SDK for Python. VMware provides different APIs and SDKs for
different applications and goals. The vSphere Automation SDK for Python supports the
development of clients that use the vSphere Automation SDK for infrastructure support tasks .

Intended Audience

This information is intended for anyone who will develop applications using the vSphere
Automation SDK for Python. Some programming background in Python is required.

VMware, Inc. 6

Updated Information

This VMware vSphere Automation SDK for Python Programming Guide is updated with each
release of the product or when necessary.

This table provides the update history of the VMware vSphere Automation SDK for Python
Programming Guide.

Revision Description

18 JUN 2018 Updated some code snippets.

15 NOV 2016 Initial release.

VMware, Inc. 7

Introduction to the vSphere
Automation SDKs 1
The vSphere Automation SDKs bundle client libraries for accessing new vSphere Automation
features like Content Library and existing features like Tagging. The vSphere Automation SDKs
contain sample applications and API reference documentation for the Content Library and
Tagging services. The vSphere Automation SDKs also provide sample code that retrieves the
endpoints of vSphere Automation and vSphere services and establishes a secure connection with
the vSphere Automation endpoint.

vSphere Automation supports six languages for accessing the vSphere Automation API services
and provides six SDKs for developing client applications for managing components in your virtual
environment.

This chapter includes the following topics:

n vSphere Automation SDKs Overview

n Supported Programming Languages

vSphere Automation SDKs Overview

The vSphere Automation API provides a unified programming interface to vSphere Automation
services that you can use through SDKs provided in six programming languages. The vSphere
Automation API provides a service-oriented architecture for accessing resources in the virtual
environment by issuing requests to the vSphere Automation Endpoint.

vSphere Automation API client applications communicate with services on the Platform Services
Controller and vCenter Server.

VMware, Inc. 8

Figure 1-1. Communication Model of vSphere Automation API Client Applications

vCenter Server

Content
Library

vSphere Automation
API Endpoint

Тagging
Service

vSphere API Services

Platform Services Controller

vCenter Single Sign-On

Lookup Service

Client
Application

Retrieve service
endpoints

Establish
authenticated

session

Communicate
with services

vSphere Automation API client applications use the Lookup Service to retrieve the vCenter Single
Sign-On endpoint, the vSphere Automation Endpoint, and the endpoints of services that are
exposed through the vSphere API. To access vSphere Automation services such as Content
Library and Tagging, client applications issue requests to the vSphere Automation Endpoint. By
using the vCenter Single Sign-On service, client applications can either establish an authenticated
vSphere Automation session, or authenticate individual requests to the vSphere Automation
Endpoint.

Client applications can access services that are exposed through the vSphere API by using the
vSphere Management SDK.

Depending on the vSphere deployment model, client applications can communicate with vSphere
Automation services on a single vCenter Server instance or multiple vCenter Server instances.
For more information about the vSphere deployment models, see Chapter 2 Components of the
vSphere Automation Virtualization Layer

SDK Developer Setup

To start developing a vSphere Automation API client application, you must download the
software and set up a development environment. You can find instructions for setting up a
development environment in the README for each vSphere Automation SDK.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 9

SDK Samples

The vSphere Automation SDKs provide sample applications that you can extend to implement
client applications that serve your needs. The code examples in the vSphere Automation SDKs
documentation are based on these sample applications.

Supported Programming Languages

The vSphere Automation SDKs are packed in six different programming languages that let you
build client applications on your preferred programming language.

n vSphere Automation SDK for Java

n vSphere Automation SDK for Python

n vSphere Automation SDK for .NET

n vSphere Automation SDK for Perl

n vSphere Automation SDK for Ruby

n vSphere Automation SDK for REST

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 10

Components of the vSphere
Automation Virtualization Layer 2
At the core of vSphere Automation is vSphere, which provides the virtualization layer of the
software-defined data center. You can use vSphere deployment options for vCenter Server and
ESXi hosts to build virtual environments of different scales.

This chapter includes the following topics:

n Components and Services of a Virtual Environment

n vSphere Deployment Configurations

Components and Services of a Virtual Environment

Starting with vSphere 6.0, the deployment of the virtual environment consists of two major
components that provide different sets of services, the VMware Platform Services Controller and
vCenter Server. You can deploy vCenter Server with an embedded or external Platform Services
Controller.

Services Installed with Platform Services Controller

The Platform Services Controller group of infrastructure services contains vCenter Single Sign-
On, License Service, Lookup Service, and VMware Certificate Authority. The services installed
with the Platform Services Controller are common to the entire virtual environment. A Platform
Services Controller can be connected to one or more vCenter Server instances. In a deployment
that consists of more than one Platform Services Controller, the data of each service is replicated
across all Platform Services Controller instances.

In vSphere Automation API client applications, you use the vCenter Single Sign-On and the
Lookup Service on the Platform Services Controller to provide a range of functionality.

Authentication and Session Management

You use the vCenter Single Sign-On service to establish an authenticated session with the
vSphere Automation Endpoint. You send credentials to the vCenter Single Sign-On service
and receive a SAML token that you use to obtain a session ID from the vSphere Automation
Endpoint. Alternatively, you can access the vSphere Automation APIs in a sessionless manner

VMware, Inc. 11

by including the SAML token in every request that you issue to the vSphere Automation
Endpoint.

Service Discovery

You use the Lookup Service to discover the endpoint URL for the vCenter Single Sign-On
service on the Platform Services Controller, the location of the vCenter Server instances, and
the vSphere Automation Endpoint.

Services Installed with vCenter Server

vCenter Server is a central administration point for ESXi hosts. The vCenter Server group of
services contains vCenter Server, vSphere Web Client, Inventory Service, vSphere® Auto
Deploy™, vSphere® ESXi™ Dump Collector, VMware vSphere® Syslog Collector on Windows and
VMware vSphere Syslog Service for the vCenter Server Appliance.

vCenter Server also provides services that you can access through the vSphere Automation
Endpoint.

Content Library Service

You can use the Content Library Service to share VM templates, vApp templates, and other
files across the software-defined data center. You can create, share, and subscribe to
content libraries on the same vCenter Server instance or on a remote instance. This promotes
consistency, compliance, efficiency, and automation in deploying workloads at scale. By using
content libraries, you can also create OVF packages from virtual machines and virtual
appliances in hosts, resource pools, and clusters. You can then use the OVF packages to
provision new virtual machines in hosts, resource pools, and clusters.

Tagging Service

This service supports the definition of tags that you can associate with vSphere objects or
vSphere Automation resources. The vSphere Automation SDKs provide the capability to
manage tags programmatically.

vSphere Deployment Configurations

vSphere Automation client applications communicate with services on the Platform Services
Controller and vCenter Server components of the virtual environment. vCenter Server can be
deployed with an embedded or external Platform Services Controller.

vCenter Server with an Embedded Platform Services Controller

vCenter Server and Platform Services Controller reside on the same virtual machine or physical
server. This deployment is most suitable for small environments such as development or test
beds.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 12

You can use the Platform Services Controller in two ways to establish secure, authenticated
sessions for your client application, by making requests to the Lookup Service and the vCenter
Single Sign-On Service.

One way to use the Platform Services Controller is to request an authentication token that can be
used to authenticate requests across services. The client connects to the Lookup Service and
retrieves the vCenter Single Sign-On Service endpoint and the vSphere Automation API endpoint.
The client then uses the vCenter Single Sign-On endpoint to authenticate with user credentials
and receive a token that securely verifies the client's credentials. This allows the client to
authenticate with a number of service endpoints without sending user credentials over the
network repeatedly.

Alternatively, if the client connects directly to the vSphere Automation API endpoint, there is no
need for the client to interact with the vCenter Single Sign-On Service. The client sends user
credentials to the vSphere Automation API endpoint, which creates a session identifier that
persists across requests.

Figure 2-1. vCenter Server with Embedded Platform Services Controller

VM

Single Sign-On
Service URL
vSphere Automation
Endpoint URL
vCenter Server
URL
Other Services
URLs

SAML Token

Lookup
Service

Single
Sign-ON
Service

vAPI
Endpoint

Content Library
Service
Тagging
Service
Other Services

VMware ESXi

VM or Physical Server

Platform Services Controller

VMware ESXi

vCenter Server

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 13

vCenter Server with an External Platform Services Controller

In the case of an external Platform Services Controller, the vCenter Server and the Platform
Services Controller are deployed on separate virtual machines or physical servers. The Platform
Services Controller can be shared across several vCenter Server instances. For larger
deployments or to provide better availability, more than one Platform Services Controller can be
deployed. When configured as replication partners within a single vCenter Single Sign-On
domain, Platform Services Controller instances replicate all user and system data within the
cluster.

A client application functions in a similar way as in a Platform Services Controller with embedded
vCenter Server deployment. The only difference is that the client application can access services
on multiple vCenter Server instances, or services only on a particular vCenter Server instance.

Figure 2-2. vCenter Server with External Platform Services Controller

VMware ESXi VMware ESXi

Single Sign-On
Service URL
vSphere Automation
Endpoint URL
vCenter Server
URL
Other Services
URLs

SAML Token

Lookup
Service

Single
Sign-ON
Service

VMware ESXi

VM or Physical Server

Platform Services Controller

vAPI
Endpoint

Content Library
Service
Тagging
Service
Other Services

VM or Physical Server

vCenter Server

Content Library
Service
Тagging
Service
Other Services

VM or Physical Server

vCenter Server

vAPI
Endpoint

VMware ESXi

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 14

Retrieving Service Endpoints 3
To access services and resources in the virtual environment, vSphere Automation API client
applications must know the endpoints of vSphere Automation and vSphere services. Client
applications retrieve service endpoints from the Lookup Service that runs on the Platform
Services Controller.

The Lookup Service provides service registration and discovery by using a Web services API. By
using the Lookup Service, you can retrieve endpoints of services on the Platform Services
Controller and vCenter Server. The following endpoints are available from the Lookup Service.

n The vCenter Single Sign-On endpoint on the Platform Services Controller. You use the
vCenter Single Sign-On service to get a SAML token and establish an authenticated session
with a vSphere Automation endpoint or a vCenter Server endpoint.

n The vSphere Automation Endpoint on vCenter Server. Through the vSphere Automation
Endpoint, you can make requests to vSphere Automation API services such as virtual
machine management, Content Library, and Tagging.

n The vCenter Server endpoint. In an environment with external Platform Services Controller
instances, you can use the vCenter Server endpoint to get the node ID of a particular vCenter
Server instance. By using the node ID , you can retrieve service endpoints on that vCenter
Server instance.

n The vSphere API endpoint and endpoints of other vSphere services that run on vCenter
Server.

Workflow for Retrieving Service Endpoints

The workflow that you use to retrieve service endpoints from the Lookup Service might vary
depending on the endpoints that you need and their number. Follow this general workflow for
retrieving service endpoints.

1 Connect to the Lookup Service on the Platform Services Controller and service registration
object so that you can query for registered services.

2 Create a service registration filter for the endpoints that you want to retrieve.

3 Use the filter to retrieve registration information for services from the Lookup Service.

VMware, Inc. 15

4 Extract one or more endpoint URLs from the array of registration information that you
receive from the Lookup Service.

This chapter includes the following topics:

n Filtering for Predefined Service Endpoints

n Filter Parameters for Predefined Service Endpoints

n Connect to the Lookup Service and Retrieve the Service Registration Object

n Retrieve Service Endpoints on vCenter Server Instances

n Retrieve a vCenter Server ID by Using the Lookup Service

n Retrieve a vSphere Automation Endpoint on a vCenter Server Instance

Filtering for Predefined Service Endpoints

The Lookup Service maintains a registration list of vSphere services. You can use the Lookup
Service to retrieve registration information for any service by setting a registration filter that you
pass to the List() function on the Lookup Service. The functions and objects that you can use
with the Lookup Service are defined in the lookup.wsdl file that is part of the SDK.

Lookup Service Registration Filters

You can query for service endpoints through a service registration object that you obtain from
the Lookup Service. You invoke the List() function on the Lookup Service to list the endpoints
that you need by passing LookupServiceRegistrationFilter. LookupServiceRegistrationFilter
identifies the service and the endpoint type that you can retrieve.

Optionally, you can include the node ID parameter in the filter to identify the vCenter Server
instance where the endpoint is hosted. When the node ID is omitted, the List() function returns
the set of endpoint URLs for all instances of the service that are hosted on different vCenter
Server instances in the environment.

For example, a LookupServiceRegistrationFilter for querying the vSphere Automation service has
these service endpoint elements.

Table 3-1. Service Registration Filter Parameters

Filter Types Value Description

LookupServiceRegistrationServiceType product= "com.vmware.cis" vSphere Automation
namespace.

type="cs.vapi" Identifies the vSphere
Automation service.

LookupServiceRegistrationEndpointType type="com.vmware.vapi.endpoint" Specifies the endpoint path for
the service.

protocol=

"vapi.json.https.public"

Identifies the protocol that will
be used for communication
with the endpoint .

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 16

For information about the filter parameter of the available predefined service endpoints, see
Filter Parameters for Predefined Service Endpoints.

Filter Parameters for Predefined Service Endpoints

Depending on the service endpoint that you want to retrieve, you provide different parameters
to the LookupServiceRegistrationFilter that you pass to the List() function on the Lookup
Service. To search for services on a particular vCenter Server instance, set the node ID parameter
to the filter.

Table 3-2. Input Data for URL Retrieval for the Lookup Service Registration Filter

Service Input Data Value

vCenter Single Sign-On product namespace com.vmware.cis

service type cs.identity

protocol wsTrust

endpoint type com.vmware.cis.cs.identity.sso

vSphere Automation Endpoint product namespace com.vmware.cis

service type cs.vapi

protocol vapi.json.https.public

endpoint type com.vmware.vapi.endpoint

vCenter Server product namespace com.vmware.cis

service type vcenterserver

protocol vmomi

endpoint type com.vmware.vim

vCenter Storage Monitoring
Service

product namespace com.vmware.vim.sms

service type sms

protocol https

endpoint type com.vmware.vim.sms

vCenter Storage Policy-Based
Management

product namespace com.vmware.vim.sms

service type sms

protocol https

endpoint type com.vmware.vim.pbm

vSphere ESX Agent Manager product namespace com.vmware.vim.sms

service type cs.eam

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 17

Table 3-2. Input Data for URL Retrieval for the Lookup Service Registration Filter (continued)

Service Input Data Value

protocol vmomi

endpoint type com.vmware.cis.cs.eam.sdk

Connect to the Lookup Service and Retrieve the Service
Registration Object

You must connect to the Lookup Service to gain access to its operations. After you connect to
the Lookup Service, you must retrieve the service registration object to make registration
queries.

n Python Example of Connecting to the Lookup Service and Retrieving a Service Registration
Object

The example is based on the code from the lookup_service_helper.py sample file.

Procedure

1 Connect to the Lookup Service.

a Configure a connection stub for the Lookup Service endpoint, which uses SOAP bindings,
by using the HTTPS protocol.

b Create a connection object to communicate with the Lookup Service.

2 Retrieve the Service Registration Object.

a Create a managed object reference to the Service Instance.

b Invoke the RetrieveServiceContent() method to retrieve the ServiceContent data object.

c Save the managed object reference to the service registration object.

With the service registration object, you can make registration queries.

Python Example of Connecting to the Lookup Service and Retrieving
a Service Registration Object

The example is based on the code from the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create SOAP client object to communicate with the Lookup Service.

my_ls_stub = Client(url=wsdl_url, location=ls_url)

2 - Configure service & port type for client transaction.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 18

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

my_ls_stub.set_options(service='LsService', port='LsPort')

3 - Manufacture a managed object reference.

managed_object_ref = \

 my_ls_stub.factory.create('ns0:ManagedObjectReference')

managed_object_ref._type = 'LookupServiceInstance'

managed_object_ref.value = 'ServiceInstance'

4 - Retrieve the ServiceContent object.

ls_service_content = \

my_ls_stub.service.RetrieveServiceContent(managed_object_ref)

5 - Retrieve the service registration object.

service_registration = ls_service_content.serviceRegistration

Retrieve Service Endpoints on vCenter Server Instances

You can create a function that obtains the endpoint URLs of a service on all vCenter Server
instances in the environment. You can modify that function to obtain the endpoint URL of a
service on a particular vCenter Server instance.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

Procedure

1 Create a registration filter object, which contains the following parts:

n A filter criterion for service information

n A filter criterion for endpoint information

Option Description

Omit the node ID parameter Retrieves the endpoint URLs of the service on all vCenter Server instances.

Include the node ID parameter Retrieves the endpoint URL of the service on a particular vCenter Server
instance.

2 Retrieve the specified service information by using the List() function.

Results

Depending on whether you included the node ID parameter, the List() function returns one of
the following results:

n A list of endpoint URLs for a service that is hosted on all vCenter Server instances in the
environment.

n An endpoint URL of a service that runs on a particular vCenter Server instance.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 19

What to do next

Call the function that you implemented to retrieve service endpoints. You can pass different filter
parameters depending on the service endpoints that you need. For more information, see Filter
Parameters for Predefined Service Endpoints.

To retrieve a service endpoint on a particular vCenter Server instance, you must retrieve the
node ID of that instance and pass it to the function. For information about how to retrieve the ID
of a vCenter Server instance, see Retrieve a vCenter Server ID by Using the Lookup Service.

Python Example of Retrieving a Service Endpoint on a vCenter
Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

def lookup_service_infos(prod, svc_type, proto, ep_type, node_id) :

 # 1 - Create a filter criterion for service info.

 filter_service_type = \

my_ls_stub.factory.create('ns0:LookupServiceRegistrationServiceType')

 filter_service_type.product = prod

 filter_service_type.type = svc_type

 # 2 - Create a filter criterion for endpoint info.

 filter_endpoint_type = \

my_ls_stub.factory.create('ns0:LookupServiceRegistrationEndpointType')

 filter_endpoint_type.protocol = proto

 filter_endpoint_type.type = ep_type

 # 3 - Create the registration filter object.

 filter_criteria = \

my_ls_stub.factory.create('ns0:LookupServiceRegistrationFilter')

 filter_criteria.serviceType = filter_service_type

 filter_criteria.endpointType = filter_endpoint_type

 filter_criteria.nodeId = node_id

 # 4 - Retrieve specified service info with the List() method.

 service_infos = my_ls_stub.service.List(service_registration,

filter_criteria)

 return service_infos

Retrieve a vCenter Server ID by Using the Lookup Service

You use the node ID of a vCenter Server instance to retrieve the endpoint URL of a service on
that vCenter Server instance. You specify the node ID in the service registration filter that you
pass to the List() function on the Lookup Service.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 20

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Managed services are registered with the instance name of the vCenter Server instance where
they run. The instance name maps to a unique vCenter Server ID. The instance name of a vCenter
Server system is specified during installation and might be an FQDN or an IP address.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

Procedure

1 List the vCenter Server instances.

2 Find the matching node name of the vCenter Server instance and save the ID.

Results

Use the node ID of the vCenter Server instance to filter subsequent endpoint requests. You can
use the node ID in a function that retrieves the endpoint URL of a service on a vCenter Server
instance. For information about implementing such a function, see Retrieve Service Endpoints on
vCenter Server Instances.

Python Example of Retrieving a vCenter Server ID by Using the
Lookup Service

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

def get_mgmt_node_id(node_instance_name) :

 # 1 - List the vCenter Server instances.

 mgmt_node_infos = lookup_service_infos(prod='com.vmware.cis',

 svc_type='vcenterserver',

 proto='vmomi', ep_type='com.vmware.vim',

 node_id='*')

 # 2 - Find the matching node name and save the ID.

 for node in mgmt_node_infos :

 for attribute in node.serviceAttributes :

 if attribute.key == 'com.vmware.vim.vcenter.instanceName' :

 if attribute.value == node_instance_name :

 return node.nodeId

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 21

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Retrieve a vSphere Automation Endpoint on a vCenter
Server Instance

Through the vSphere Automation Endpoint, you can access other vSphere Automation services
that run on vCenter Server, such as Content Library and Tagging. To use a vSphere Automation
service, you must retrieve the vSphere Automation Endpoint.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

n Determine the node ID of the vCenter Server instance where the vSphere Automation service
runs.

n Implement a function that retrieves the endpoint URL of a service on a vCenter Server
instance.

Procedure

1 Invoke the function for retrieving the endpoint URL of a service on a vCenter Server instance
by passing filter strings that are specific to the vSphere Automation endpoint.

2 Save the URL from the resulting single-element list.

Python Example of Retrieving a vSphere Automation Endpoint on a
vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

service_infos = lookup_service_infos(prod='com.vmware.cis',

 svc_type='cs.vapi',

 proto='vapi.json.https.public',

 ep_type='com.vmware.vapi.endpoint',

 node_id=my_mgmt_node_id)

my_vapi_url = service_infos[0].serviceEndpoints[0].url

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 22

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Authentication Mechanisms 4
To perform operations on services in the vSphere environment, you must create an
authenticated connection to the services that you want to use. With the vSphere Automation
SDK for Python you can authenticate and access vSphere Automation services.

Client applications can choose from two supported authentication patterns for accessing services
in the virtual environment.

For better security, client applications can request a security token to authenticate connections
with the vSphere Automation services.

To invoke operations on services, client applications must create a security context. The security
context represents the client authentication. You can achieve authentication by using one of the
following mechanisms.

Password-Based Authentication

To authenticate with user name and password, you connect to the vSphere Automation
Endpoint with vCenter Single Sign-On user credentials and obtain a session identifier (ID). The
user account credentials are validated by the vSphere Automation Endpoint, and must be
present in the vCenter Single Sign-On identity store. The session ID is valid only for the
service endpoint that you want to access and that issues the session ID.

Token-Based Authentication

Client applications can authenticate by using the vCenter Single Sign-On component on
thePlatform Services Controller. vCenter Single Sign-On includes the Security Token Service
(STS) that issues security tokens. The token must comply with the Security Assertion Markup
Language (SAML) specification, which defines an XML-based encoding for communicating
authentication data.

vCenter Single Sign-On supports two types of security tokens: bearer token and Holder-of-
Key (HoK) token. To acquire a SAML token, client applications must issue a token request to
vCenter Single Sign-On.

Client applications can present a SAML token to the vSphere Automation Endpoint in
exchange for a session identifier with which they can perform a series of authenticated
operations.

VMware, Inc. 23

To retrieve a session ID for the vSphere Web Services endpoint, you provide the SAML token
to the vSphere Web services endpoint. For more information about creating an authenticated
session to access the vSphere Web Services, see the vSphere Web Services SDK
Programming Guide documentation.

This chapter includes the following topics:

n Retrieve a SAML Token

n Create a vSphere Automation Session with a SAML Token

n Create a vSphere Automation Session with User Credentials

n Create a Web Services Session

Retrieve a SAML Token

The vCenter Single Sign-On service provides authentication mechanisms for securing the
operations that your client application performs in the virtual environment. Client applications use
SAML security tokens for authentication.

Client applications use the vCenter Single Sign-On service to retrieve SAML tokens. For more
information about how to acquire a SAML security token, see the vCenter Single Sign-On
Programming Guide documentation.

The vSphere Automation SDK for Python provides a utility class to simplify the task of requesting
a SAML token from the vCenter Single Sign-On service. The utility provides a wrapper around the
complexity of handling token requests. For more information about the utility, see the sso.py
sample file. The source file is in the vSphere Automation SDK for Python directory: client/
samples/src/com/vmware/vcloud/suite/sample/common/sso.py.

Prerequisites

Verify that you have the vCenter Single Sign-On URL. You can use the Lookup Service on the
Platform Services Controller to obtain the endpoint URL. For information about retrieving service
endpoints, see Chapter 3 Retrieving Service Endpoints.

Procedure

1 Create a connection object to communicate with the vCenter Single Sign-On service.

Pass the vCenter Single Sign-On endpoint URL, which you can get from the Lookup Service.

2 Issue a security token request by sending valid user credentials to the vCenter Single Sign-On
service on the Platform Services Controller.

Results

The vCenter Single Sign-On service returns a SAML token.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 24

What to do next

You can present the SAML token to the vSphere Automation API Endpoint or other endpoints,
such as the vSphere Web Services Endpoint. The endpoint returns a session ID and establishes a
persistent session with that endpoint. Each endpoint that you connect to uses your SAML token
to create its own session.

Python Example of Retrieving a SAML Token

This example is based on the code in the external_psc_sso_workflow.py sample file.

This example uses the following global variables.

n my_vapi_hostname

n my_sso_username

n my_sso_password

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

from vsphere.samples.common import sso

Use the SsoAuthenticator utility class to retrieve

a bearer SAML token from the vCenter Single Sign-On service.

sso_url = 'https://' + my_vapi_hostname + ':7444/ims/STSService'

authenticator = sso.SsoAuthenticator(sso_url)

saml_token = authenticator.get_bearer_saml_assertion(my_sso_username,

 my_sso_password,

 delegatable=True)

Create a vSphere Automation Session with a SAML Token

To establish a vSphere Automation session, you create a connection to the vSphere Automation
API Endpoint and then you authenticate with a SAML token to create a session for the
connection.

Prerequisites

n Retrieve the vSphere Automation Endpoint URL from the Lookup Service.

n Obtain a SAML token from the vCenter Single Sign-On service.

Procedure

1 Create a connection by specifying the vSphere Automation API Endpoint URL and the
message protocol to be used for the connection.

Note To transmit your requests securely, use https for the vSphere Automation API
Endpoint URL.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 25

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

2 Create the request options or stub configuration and set the security context to be used.

The security context object contains the SAML token retrieved from the vCenter Single Sign-
On service. Optionally, the security context might contain the private key of the client
application.

3 Create an interface stub or a REST path that uses the stub configuration instance.

The interface stub corresponds to the interface containing the method to be invoked.

4 Invoke the session create method.

The service creates an authenticated session and returns a session identification cookie to
the client.

5 Create a security context instance and add the session ID to it.

6 Update the stub configuration instance with the session security context.

What to do next

Use the updated stub configuration with the session ID to create a stub for the interface that you
want to use. Method calls on the new stub use the session ID to authenticate.

Python Example of Creating a vSphere Automation API Session with
a SAML Token

This example is based on code in the external_psc_sso_workflow.py sample file.

This example uses the following global variables.

n my_vapi_hostname

n my_stub_config

n saml_token

The example assumes that you previously obtained a vSphere Automation API URL from the
Lookup Service, and a SAML token from the vCenter Single Sign-On Service.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Create a session object in the client.

session = requests.Session()

For development environment only, suppress server certificate checking.

session.verify = False

from requests.packages.urllib3 import disable_warnings

from requests.packages.urllib3.exceptions import InsecureRequestWarning

disable_warnings(InsecureRequestWarning)

Create a connection for the session.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 26

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

vapi_url = 'https://' + my_vapi_hostname + '/api'

connector = get_requests_connector(session=session, url=vapi_url)

Add SAML token security context to the connector.

saml_token_context = create_saml_bearer_security_context(saml_token)

connector.set_security_context(saml_token_context)

Create a stub configuration by using the SAML token security context.

my_stub_config = StubConfigurationFactory.new_std_configuration(connector)

Create a Session stub with SAML token security context.

session_stub = Session(my_stub_config)

Use the create operation to create an authenticated session.

session_id = session_stub.create()

Create a session ID security context.

session_id_context = create_session_security_context(session_id)

Update the stub configuration with the session ID security context.

my_stub_config.connector.set_security_context(session_id_context)

Create a vSphere Automation Session with User Credentials

With the vSphere Automation SDK for Python, you can create authenticated sessions by using
only user credentials.

You connect to the vSphere Automation Endpoint by using a user name and password known to
the vCenter Single Sign-On service. The vSphere Automation uses your credentials to
authenticate with the vCenter Single Sign-On Service and obtain a SAML token.

Prerequisites

n Retrieve the vSphere Automation Endpoint URL from the Lookup Service.

n Verify that you have valid user credentials for the vCenter Single Sign-On identity store.

Procedure

1 Create a connection stub by specifying the vSphere Automation Endpoint URL and the
message protocol to be used for the connection.

2 Create a stub configuration instance and set the specific security context to be used.

The security context object uses the user name and password that are used for
authenticating to the vCenter Single Sign-On service.

3 Create a Session stub that uses the stub configuration instance.

4 Call the create operation on the Session stub to create an authenticated session to the
vSphere Automation Endpoint.

The operation returns a session identifier.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 27

5 Create a security context instance and add the session ID to it.

6 Update the stub configuration instance with the session security context.

What to do next

You can use the authenticated session to access vSphere Automation services. For more
information about creating stubs to the vSphere Automation services, see Chapter 5 Accessing
vSphere Automation Services.

Create a Web Services Session

To develop a complex workflow, you might need to send requests to vSphere Web Services
running in your virtual environment. To achieve this, you access the vSphere Web Services API
by using the Web Services endpoint.

The vSphere Web Services API also supports session-based access. To establish an
authenticated session, you can send the SAML token retrieved from the vCenter Single Sign-On
service to a vSphere Web Service. In return you receive a session identifier that you can use to
access the service. For more information about accessing Web Services, see the vSphere Web
Services SDK Programming Guide documentation.

The vSphere Automation SDK for Python supports a simplified way of creating connections to
the Web Services API by using the pyVim library.

Prerequisites

n Retrieve the vSphere Web Services endpoint URL from the Lookup Service.

n Obtain a SAML token from the vCenter Single Sign-On service.

Procedure

1 Connect to the vSphere Web Services endpoint.

2 Send the SAML token to a specific Web service to create an authenticated session.

3 Add the retrieved session ID to the service content object.

The Service Content object gives you access to several server-side managed objects that
represent vSphere services and components.

Python Example of Creating a Web Services Session

This example is based on code in the service_manager.py sample file.

This example uses the following global variables.

n my_ws_url

n my_sso_username

n my_sso_password

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 28

The my_ws_url variable represents the URL of the vCenter Server Web Services API endpoint.
You can retrieve the endpoint URL from the Lookup Service.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Extract the hostname from the endpoint URL.

url_scheme, url_host, url_path, url_params, url_query, url_fragment = \

 urlparse(my_ws_url)

pattern = '(?P<host>[^:/]+).?(?P<port>[0-9]*)'

match = re.search(pattern, url_host)

host_name = match.group('host')

Invoke the SmartConnect() method by supplying

the host name, user name, and password.

service_instance_stub = SmartConnect(host=host_name,

 user=my_sso_username,

 pwd=my_sso_password)

Retrieve the service content.

service_content = service_instance_stub.RetrieveContent()

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 29

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Accessing vSphere Automation
Services 5
vSphere Automation SDK provides mechanisms for creating remote stubs to give clients access
to vSphere Automation services.

The sequence of tasks you must follow to create a remote stub starts with creating a
ProtocolFactory. You use the protocol factory object to create a ProtocolConnection. Connection
objects provide the basis for creating stub interfaces tovSphere Automation services.

When you establish a connection to the vSphere Automation Endpoint, you can create a
StubFactory object and a StubConfiguration object. With these objects, you can create the remote
stub for the vSphere Automation service that you want to access.

The complete connection sequence also includes SSL truststore support and a temporary
StubConfiguration that you use for SAML token authentication and session creation.

For greater security, use an external utility to create a certificate store:

keytool -import -noprompt -trustcacerts \

-alias <alias name> \

-file <certificate file> \

-keystore <truststore filename> \

-storepass <truststore password>

This chapter includes the following topics:

n Access a vSphere Automation Service

Access a vSphere Automation Service

To access a vSphere Automation service, you must have a valid session connection. The
sequence for accessing a vSphere Automation service includes creating a protocol connection
object and using it to create the service stub.

Prerequisites

Establish a connection to the vSphere Automation Endpoint URL. For more information about the
authentication mechanisms that you can use, see Chapter 4 Authentication Mechanisms.

VMware, Inc. 30

Procedure

1 Create a protocol factory object.

2 Create a protocol connection object to access an API provider.

The vSphere Automation API clients use ApiProvider instances to invoke operations on
services running in the virtual environment. To invoke an operation, you must specify the
target service and operation, input parameters, and execution context.

3 Create a StubFactory object by using the ApiProvider instance.

4 Create a StubConfiguration instance and set the security context to be used for the service
stub.

5 Create the stub for the vSphere Automation service interface by calling the create method of
the StubFactory instance. Pass the service class and the StubConfiguration instance as
arguments.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 31

Content Library Service 6
The Content Library Service provides means for managing content libraries in the context of a
single or multiple vCenter Server instances deployed in your virtual environment. You can use the
vSphere Automation APIs to access the Content Library Service through the vSphere Automation
Endpoint.

Administrators can use content libraries to share VM templates, vApp templates, and other types
of files across vCenter Server instances in the virtual environment. Sharing templates across your
virtual environment promotes consistency, compliance, efficiency, and automation in deploying
workloads at scale.

n Content Library Overview

A content library instance represents a container for a set of library items. A content library
item instance represents the logical object stored in the content library, which might be one
or more usable files.

n Querying Content Libraries

You can create queries to find libraries that match your criteria. You can also retrieve a list of
all libraries or only the libraries of a specific type.

n Content Libraries

The Content Library API provides services that allow you to create and manage content
libraries programmatically. You can create a local library and publish it for the entire virtual
environment. You can also subscribe to use the contents of a local library and enable
automatic synchronization to ensure that you have the latest content.

n Library Items

A library item groups multiple files within one logical unit. You can perform various tasks with
the items in a content library.

VMware, Inc. 32

Content Library Overview

A content library instance represents a container for a set of library items. A content library item
instance represents the logical object stored in the content library, which might be one or more
usable files.

n Content Library Types

You can create two types of libraries, local and subscribed.

n Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be
contained in a content library. VMs and vApps have several files, such as log files, disk files,
memory files, and snapshot files that are part of a single library item. You can create library
items in a specific local library or remove items from a local library. You can also upload files
to an item in a local library so that the libraries subscribed to it can download the files to
their NFS or SMB server, or datastore.

n Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the
vCenter Server instance or on a remote file system.

Content Library Types

You can create two types of libraries, local and subscribed.

n You can create a local library as the source for content you want to save or share. Create the
local library on a single vCenter Server instance. You can add items to a local library or
remove them. You can publish a local library and as a result this content library service
endpoint can be accessed by other vCenter Server instances in your virtual environment.
When you publish a library, you can configure the authentication method, which a subscribed
library must use to authenticate to it.

n You can create a subscribed library and populate its content by synchronizing to a local
library. A subscribed library contains copies of the local library files or just the metadata of
the library items. The local library can be located on the same vCenter Server instance as the
subscribed library, or the subscribed library can reference a local library on a different
vCenter Server instance. You cannot add library items to a subscribed library. You can only
add items to the source library. After synchronization, both libraries will contain the same
items.

Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be contained
in a content library. VMs and vApps have several files, such as log files, disk files, memory files,
and snapshot files that are part of a single library item. You can create library items in a specific
local library or remove items from a local library. You can also upload files to an item in a local

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 33

library so that the libraries subscribed to it can download the files to their NFS or SMB server, or
datastore.

For information about the tasks that you can perform by using the content library service, see
Content Libraries.

Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the
vCenter Server instance or on a remote file system.

Depending on the type of storage that you have, you can use Virtual Machine File System
(VMFS) or Network File System (NFS) for storing content on a datastore.

For storing content on a remote file system, you can enter the path to the NFS storage that is
mounted on the Linux file system of the vCenter Server Appliance. For example, you can use the
following URI formats: nfs://<server>/<path>?version=4 and nfs://<server>/<path>. If you have a
vCenter Server instance that runs on a Windows machine, you can specify the Server Massage
Block (SMB) URI to the Windows shared folders that store the library content. For example, you
can use the following URI format: smb://<unc-server>/<path>.

Python Example of Storing Library Content on a Datastore

This example is based on the code in the library_crud.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Create a StorageBacking instance of datastore type.

library_backing = library_client.StorageBacking()

library_backing.type = library_client.StorageBacking.Type.DATASTORE

Pass the value of the datastore managed object reference.

The vSphere

 Automation SDK for Python contains

the GetDatastoreByName class, which sample resource is located in the

/client/samples/src/com/vmware/vcloud/suite/sample/vim/helpers/ directory.

You can use the utility to retrieve the managed object reference of the datastore entity.

library_backing.datastore_id = ‘datastore-123’

Create a LibraryModel that represents a local library backed on a datastore.

library_model = content_client.LibraryModel()

library_model.name = ‘AcmeLibrary’

library_model.storage_backings = [library_backing]

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 34

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Querying Content Libraries

You can create queries to find libraries that match your criteria. You can also retrieve a list of all
libraries or only the libraries of a specific type.

n Listing All Content Libraries

You can retrieve a list of all content library IDs in your virtual environment, regardless of
their type, by using the Library service.

n Listing Content Libraries of a Specific Type

You can use the vSphere Automation API to retrieve content libraries of a specific type. For
example, you can list only the local libraries in your virtual environment.

n List Content Libraries by Using Specific Search Criteria

You can filter the list of content libraries and retrieve only the libraries that match your
specific criteria. For example, you might want to publish all local libraries with a specific
name.

Listing All Content Libraries

You can retrieve a list of all content library IDs in your virtual environment, regardless of their
type, by using the Library service.

You can use the list function to retrieve all local and subscribed libraries in your system.

Python Example of Retrieving a List of All Content Libraries

This example is based on the code in the library_crud.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

library_stub = content_client.Library(my_stub_config)

libraries = library_stub.list()

print(’List of all library identifiers:’)

for library_id in library_ids :

 library = library_stub.get(library_id)

 print(’Library ID {}: {}’.format(library_id, library.name))

Listing Content Libraries of a Specific Type

You can use the vSphere Automation API to retrieve content libraries of a specific type. For
example, you can list only the local libraries in your virtual environment.

If you want to retrieve only a list of the local libraries, you must retrieve the LocalLibrary service
and use the list function on the LocalLibrary service. To list only subscribed libraries, you must
retrieve the SubscribedLibrary service and call the list function on the SubscribedLibrary service.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 35

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

List Content Libraries by Using Specific Search Criteria

You can filter the list of content libraries and retrieve only the libraries that match your specific
criteria. For example, you might want to publish all local libraries with a specific name.

Prerequisites

Verify that you have access to the Library service.

Procedure

1 Create a FindSpec instance and specify your search criteria.

2 Call the find function on the Library service.

All content libraries that match your search criteria are listed.

Python Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your
virtual environment.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

Create a FindSpec object to specify your search criteria.

find_spec = content_client.Library.FindSpec()

find_spec.name = ’AcmeLibrary’

find_spec.type = content_client.LibraryModel.LibraryType.LOCAL

Invoke the find() function by using the FindSpec instance.

library_stub = content_client.Library(my_stub_config)

library_ids = library_stub.find(find_spec)

Content Libraries

The Content Library API provides services that allow you to create and manage content libraries
programmatically. You can create a local library and publish it for the entire virtual environment.
You can also subscribe to use the contents of a local library and enable automatic
synchronization to ensure that you have the latest content.

n Create a Local Content Library

You can create a local content library programmatically by using the vSphere Automation
API. The API allows you to populate the content library with VM and vApp templates. You
can use these templates to deploy virtual machines or vApps in your virtual environment.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 36

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

n Publish an Existing Content Library

To make the library content available for other vCenter Server instances across the vSphere
Automation environment, you must publish the library. Depending on your workflow, select
a method for publishing the local library. You can publish a local library that already exists in
your vSphere Automation environment.

n Publish a Library at the Time of Creation

You can publish a local library at the time of creation to enable other libraries to subscribe
and use the library content.

n Subscribe to a Content Library

You can subscribe to public content libraries. The source objects for a public content library
can be: a library created on a vCenter Server 6.0 instance, a catalog created on a vCloud
Director 5.5 instance, or a third-party library. When you subscribe to a library, you must
specify the backing storage for the library content. You must also provide the correct user
name and password if the library requires basic authentication.

n Synchronize a Subscribed Content Library

When you subscribe to a published library, you can configure the settings for downloading
and updating the library content.

n Editing the Settings of a Content Library

You can update the settings of content library types in your virtual environment by using the
vSphere Automation API.

n Removing the Content of a Subscribed Library

You can free storage space in your virtual environment by removing the subscribed library
content that you no longer need.

n Delete a Content Library

When you no longer need a content library, you can invoke the delete method on either the
LocalLibrary or the SubscribedLibrary service depending on the library type.

Create a Local Content Library

You can create a local content library programmatically by using the vSphere Automation API.
The API allows you to populate the content library with VM and vApp templates. You can use
these templates to deploy virtual machines or vApps in your virtual environment.

Procedure

1 Create a StorageBacking instance and define the storage location.

2 Create a LibraryModel instance and set the properties of the new local library.

3 Access the LocalLibrary object which is part of the vSphere Automation API service
interfaces.

4 Call the create function on the LocalLibrary object and pass the LibraryModel as a parameter.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 37

Python Example of Creating a Local Content Library

This example creates a local library with name AcmeLibrary , which is stored on the local file
system where vCenter Server runs.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

1 - Create a storage backing instance on a local file system.

library_backing = library_client.StorageBacking()

library_backing.type = library_client.StorageBacking.Type.OTHER

library_backing.storage_uri = ’file:///tmp’

2 - Create a Library model to specify properties of the new library.

library_model = content_client.LibraryModel()

library_model.type = content_client.LibraryModel.LibraryType.LOCAL

library_model.name = ’AcmeLibrary’

library_model.storage_backings = [library_backing]

3 - Call the create() method, passing the library model as a parameter.

idem_token = str(uuid.uuid4())

local_library_stub = content_client.LocalLibrary(my_stub_config)

library_id = local_library_stub.create(create_spec=library_model,

 client_token=idem_token)

Publish an Existing Content Library

To make the library content available for other vCenter Server instances across the vSphere
Automation environment, you must publish the library. Depending on your workflow, select a
method for publishing the local library. You can publish a local library that already exists in your
vSphere Automation environment.

Procedure

1 Retrieve a reference to the LocalLibrary service.

2 Retrieve an existing local library by using the library ID.

3 Create a PublishInfo instance to define how the library is published.

4 Specify the authentication method to be used by a subscribed library to authenticate to the
local library. You can enable either basic authentication or no authentication. Basic
authentication requires a user name and password.

5 (Optional) If you publish the library with basic authentication, you must specify a user name
and password for the PublishInfo instance, which must be used for authentication.

Important Use the predefined user name vcsp or leave the user name undefined. You must
set only a password to protect the library.

6 Specify that the library is published.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 38

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

7 Use the retrieved local library to configure it with the PublishInfo instance.

8 Update the properties of the LibraryModel object returned for the local library.

Python Example of Publishing an Existing Content Library

This example is based on the code in the library_publish_subscribe.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Retrieve an existing local library.

local_library_stub = content_client.LocalLibrary(my_stub_config)

local_library = local_library_stub.get(my_library_id)

Specify how the local library is published, using BASIC authentication.

publish_info = library_client.PublishInfo()

publish_info.user_name = ’vcsp’ # Can omit this value; if specified, it must be ’vcsp’.

publish_info.password = ’password’

publish_info.authentication_method = library_client.PublishInfo.AuthenticationMethod.BASIC

publish_info.published = True

Update the LibraryModel object retieved in step 1

and configure it with the PublishInfo object.

local_library.publish_info = publish_info

Use the LibraryModel object to update the library instance.

local_library_stub.update(library_id=my_library_id,

update_spec=local_library)

Publish a Library at the Time of Creation

You can publish a local library at the time of creation to enable other libraries to subscribe and
use the library content.

Procedure

1 Retrieve the LocalLibrary service.

2 Create a PublishInfo instance to define how the library is published.

3 Specify the authentication method to be used by a subscribed library to authenticate to the
local library.

You can enable either basic authentication or no authentication on the library. Basic
authentication requires a user name and password.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 39

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

4 (Optional) If you publish the library with basic authentication, you must specify a user name
and password for the PublishInfo instance, which must be used for authentication.

Important Use the predefined user name vcsp or leave the user name undefined. You must
set only a password to protect the library.

5 Create a LibraryModel instance and configure the instance.

6 Set the library type to local and use the configured PublishInfo instance to set the library to
published.

7 Define where the content of the local library is stored by using the StorageBacking class.

8 Create a published local library.

Subscribe to a Content Library

You can subscribe to public content libraries. The source objects for a public content library can
be: a library created on a vCenter Server 6.0 instance, a catalog created on a vCloud Director 5.5
instance, or a third-party library. When you subscribe to a library, you must specify the backing
storage for the library content. You must also provide the correct user name and password if the
library requires basic authentication.

Note If you subscribe to libraries created with basic authentication on a vCenter Serverinstance,
make sure that you pass vcsp as an argument for the user name.

Procedure

1 Create a StorageBacking instance to define the location where the content of the subscribed
library is stored.

2 Create a SubscriptionInfo instance to define the subscription behavior of the library.

a Provide the mechanism to be used by the subscribed library to authenticate to the
published library.

You can choose between no authentication and basic authentication depending on the
settings of the published library you subscribe to. If the library is published with basic
authentication, you must set basic authentication in the SubscriptionInfo instance. Set the
user name and the password of the SubscriptionInfo instance to match the credentials of
the published library.

b Provide the URL to the endpoint where the metadata of the published library is stored.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 40

c Define the synchronization mechanism of the subscribed library.

You can choose between two synchronization modes: automatic and on demand. If you
enable automatic synchronization for a subscribed library, both the content and the
metadata are synchronized with the published library. To save storage space, you can
synchronize the subscribed library on demand and update only the metadata for the
published library content.

d Set the thumbprint that is used for validating the certificate of the published library.

3 Create a LibraryModel instance and set the library type to subscribed
(LibraryModel.LibraryType.SUBSCRIBED).

4 Access the SubscribedLibrary service and create the subscribed library instance.

Python Example of Subscribing to a Published Library

This example is based on the code in the library_publish_subscribe.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Create a StorageBacking instance on a local file system.

library_backing = library_client.StorageBacking()

library_backing.type = library_client.StorageBacking.Type.OTHER

library_backing.storage_uri = ’/mnt/nfs/cls-root’

Create a new SubscriptionInfo object to describe the subscription behavior.

subscription_info = library_client.SubscriptionInfo()

subscription_info.authentication_method = library_client.SubscriptionInfo.AuthenticationMethod.BASIC

subscription_info.user_name = ’libraryUser’

subscription_info.password = ’password’

subscription_info.subscription_url = ’https://www.acmecompary.com/library_inventory/lib.json’

subscription_info.automatic_sync_enabled = True

subscription_info.ssl_thumbprint = ’9B:00:3F:C4:4E:B1:F3:F9:0D:70:47:48:E7:0B:D1:A7:0E:DE:60:A5’

Create a new LibraryModel object for the subscribed library.

library_model = content_client.LibraryModel()

library_model.type = content_client.LibraryModel.LibraryType.SUBSCRIBED

library_model.name = ’subscrLibrary’

Attach the storage backing and the subscription info to the library model.

library_model.storage_backings = [library_backing]

library_model.subscription_info = subscription_info

Create the new library instance.

idem_token = str(uuid.uuid4())

local_library_stub = content_client.LocalLibrary(my_stub_config)

library_id = local_library_stub.create(create_spec=library_model,client_token=idem_token)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 41

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Synchronize a Subscribed Content Library

When you subscribe to a published library, you can configure the settings for downloading and
updating the library content.

n You can enable automatic synchronization of the subscribed library and download a copy of
the content of the local library immediately.

n You can save storage space and download only the metadata for the items that are part of
the local library.

To ensure that your subscribed library contains the most recent published library content, you
can force a synchronization task.

Procedure

1 Access the SubscribedLibrary vSphere Automation service.

2 Retrieve the subscribed library ID from the SubscribedLibrary service.

3 Force the synchronization of the subscribed library.

Results

The synchronization operation depends on the update settings of the subscribed library. If the
subscribed library is configured to update only on demand, only the metadata of the library items
will be synchronized.

Editing the Settings of a Content Library

You can update the settings of content library types in your virtual environment by using the
vSphere Automation API.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 42

Table 6-1. Options for Updating a Content Library

Content Library Types Option

Local content library You can change the settings of a local library before
calling the update function on the LocalLibrary object:

n Before a library is published, you can edit the
following settings:

n The name of a local library that is retrieved by
using the LocalLibrary object

n The human-readable description of a local library
retrieved by using the LocalLibrary object

n After a library is published, you must first retrieve the
PublishInfo instance of the published library you want.
You can use the instance to configure the following
settings.

n Unpublish the local library.

n Change the authentication method of the library.

n Change the password that must be used for
authentication.

Subscribed content library You can edit the settings of a subscribed library if you
retrieve the SubscriptionInfo instance associated with it.
To apply the changes, you must update the library by
using the SubscribedLibrary object.

You can configure the following settings:

n The authentication method required by the local
library

n The user name and password of the subscribed library
for authentication to the local library

n The method for synchronizing the metadata and the
content of the subscribed library

n The thumbprint used for validating the SSL certificate
of the local library

Removing the Content of a Subscribed Library

You can free storage space in your virtual environment by removing the subscribed library
content that you no longer need.

You can create a subscribed library with the option to download the library content on demand.
As a result, only the metadata for the library items is stored in the associated with the subscribed
library storage. When you want to deploy a virtual machine from a VM temple in the subscribed
library, you must synchronize the subscribed library to download the entire published library
content. When you no longer need the VM template, you can call the evict function on the
SubscribedLibrary service. You must provide the subscribed library ID to this function. As a result,
the subscribed library content that is cached on the backing storage is deleted.

If the subscribed library is not configured to synchronize on demand, an exception is thrown. In
this case the subscribed library always attempts to have the most recent published library
content.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 43

Delete a Content Library

When you no longer need a content library, you can invoke the delete method on either the
LocalLibrary or the SubscribedLibrary service depending on the library type.

Procedure

1 Access the SubscribedLibrary or the LocalLibrary service by using the vSphere Automation
Endpoint.

2 Retrieve the library ID you want to delete.

3 Call the delete function on the library service and pass the library ID as argument.

All library items cashed on the storage backing are removed asynchronously. If this operation
fails, you must manually remove the content of the library.

Library Items

A library item groups multiple files within one logical unit. You can perform various tasks with the
items in a content library.

You can upload files to a library item in a local library and update existing items. You can
download the content of a library item from a subscribed library and use the item, for example,
to deploy a virtual machine. You can remove the content of a library item from a subscribed
library to free storage space and keep only the metadata of the library item. When you no longer
need local library items, you can delete them and they are removed from the subscribed library
when a synchronization task is completed.

You can create a library item from a specific item type, for example .ovf. The Content Library
service must support the library item type to handle the item correctly. If no support is provided
for a specified type, the Content Library service handles the library item in the default way,
without adding metadata to the library item or guiding the upload process.

n Create an Empty Library Item

You can create as many library items as needed and associate them with a local content
library.

n Querying Library Items

You can perform numerous query operations on library items.

n Edit the Settings of a Library Item

You can edit the name, description, and type of a library item.

n Upload a File from a Local System to a Library Item

You can upload different types of files from a local system to a library item that you want to
use in the vSphere Automation environment.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 44

n Upload a File from a URL to a Library Item

You can upload different types of files from a local system to a library item that you want to
use in the vSphere Automationenvironment.

n Download Files to a Local System from a Library Item

You might want to download files to a local system from a library item and then make
changes to the files before you use them.

n Synchronizing a Library Item in a Subscribed Content Library

The items in a subscribed library have features that are distinct from the items in a local
library. Synchronizing the content and the metadata of an item in a subscribed library
depends on the synchronization mechanism of the subscribed library.

n Removing the Content of a Library Item

You can remove the content from a library item to free space on your storage.

n Deleting a Library Item

You can remove a library item from a local library when you no longer need it.

Create an Empty Library Item

You can create as many library items as needed and associate them with a local content library.

Procedure

1 Access the Item service by using the vSphere Automation endpoint.

2 Instantiate the ItemModel class.

3 Define the settings of the new library item.

4 Associate the library item with an existing local library.

5 Invoke the create function on the Item object to pass the library item specification and the
unique client token.

What to do next

Upload content to the new library item. See Upload a File from a Local System to a Library Item
and Upload a File from a URL to a Library Item.

Python Example of Creating a Library Item

This example shows how to create an empty library item that stores an ISO image file.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

1 - Create an instance of the ItemModel class and specify the item settings.

item_model = library_client.ItemModel()

item_model.name = ’ESXi ISO image’

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 45

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

item_model.description = ’ISO image with the latest security patches for ESXi’

item_model.type = ’iso’

2 - Associate the new item with an existing library.

item_model.library_id = my_library_id

3 - Create the new instance of the Item class, using the specified model.

idem_token = str(uuid.uuid4())

item_stub = library_client.Item(my_stub_config)

item_id = item_stub.create(create_spec=item_model, client_token=idem_token)

Querying Library Items

You can perform numerous query operations on library items.

You can retrieve a list of all items in a library, retrieve a library item that has a specific type or
name, and find a library item that is not cached on the disk. You can then update the library item
content from the subscribed library.

List Library Items

You can use the list method of the Item object to retrieve a list of all items in a particular library.

Prerequisites

Verify that you have access to the Item service.

Procedure

1 Retrieve the ID of the content library whose items you want to list.

2 List the items of the specific library.

3 Retrieve a list of the files that belong to a library item.

Example

You can see an example query operation in the code example for Edit the Settings of a Library
Item. The beginning of the example lists the items of a published library and prints a list with the
names and size of each file in the listed items.

List Library Items That Match Specific Criteria

You can filter the items contained in a library and retrieve only the items matching specific
criteria. For example, you might want to remove or update only specific items in a library.

Prerequisites

Verify that you have access to the Item service.

Procedure

1 Create an instance in the FindSpec class.

2 Specify the filter properties by using the FindSpec instance.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 46

3 List the items matching the specified filter.

Results

A list of items matching the filter criteria is created as a result.

Edit the Settings of a Library Item

You can edit the name, description, and type of a library item.

Prerequisites

Verify that you have access to the Item service.

Procedure

1 Retrieve the item that you want to update.

2 Create an ItemModel instance.

3 Change the human-readable name and description of the library item.

4 Update the library item with the configured item model.

Python Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the
name and description of the retrieved item.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

1 - List the items in a published library.

item_stub = library_client.Item(my_stub_config)

item_ids = item_stub.list(my_library_id)

2 - List the files uploaded to each library item and print their names and sizes.

file_stub = item_client.File(my_stub_config)

for item_id in item_ids :

 item = item_stub.get(item_id)

 file_infos = file_stub.list(item_id)

 for file_info in file_infos :

 print(’Library item {} has file {} with size {}’.format(item.name, file_info.name,

file_info.size))

3 - For a library item with a specified name,

create an ItemModel to change the name and description of the library item.

if item.name == ’simpleVmTemplate’ :

 print(’Library item {} with description {}’.format(item.name, item.description))

 item_model = library_client.ItemModel()

 item_model.name = ’newItemName’

 item_model.description = ’Description of the newItemName’

 item_stub.update(library_item_id=item_id,

 update_spec=item_model)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 47

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 print(’has been changed to:’)

 print(’library item {} with description {}’.format(item_model.name, item_model.description))

Upload a File from a Local System to a Library Item

You can upload different types of files from a local system to a library item that you want to use
in the vSphere Automation environment.

Prerequisites

n Create an empty library item. See Create an Empty Library Item.

n Verify that you have access to the UpdateSession and File services.

Procedure

1 Create an UpdateSessionModel instance to track the changes that you make to the library item.

2 Create an update session by using the UpdateSession service.

3 Create an AddSpec instance to describe the upload method and other properties of the file to
be uploaded.

4 Create the request for changing the item by using the File service.

5 Upload the file that is on the local system.

6 Complete and delete the update session to apply the changes to the library item.

Python Example of Uploading Files to a Library Item from a Local System

This example shows how to upload an ISO image file from the local system to a library item.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

1 - Create an instance of the ItemModel class and specify the item settings.

item_model = library_client.ItemModel()

item_model.name = ’ESXi patches’

item_model.description = ’ESXi security patches’

item_model.type = ’iso’

item_model.library_id = my_library_id

idem_token = str(uuid.uuid4())

item_stub = library_client.Item(my_stub_config)

item_id = item_stub.create(create_spec=item_model,

client_token=idem_token)

2 - Create an UpdateSessionModel instance to track the changes you make to the item.

update_session_model = item_client.UpdateSessionModel()

update_session_model.library_item_id = item_id

3 - Create an update session from the model.

idem_token = str(uuid.uuid4())

update_session_stub = update_session_client.UpdateSession(my_stub_config)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 48

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

session_id = update_session_stub.create(create_spec=update_session_model

client_token=idem_token)

try :

 # 4 - Create a new AddSpec instance to describe the properties of the file to be uploaded.

 file_spec = update_session_client.AddSpec()

 file_spec.name = ’ESXi patch’

 file_spec.source_type = update_session_client.File.SourceType.PUSH

 # 5 - Link the ISO file spec to the update session.

 update_file_stub = update_session_stub.File(my_stub_config)

 file_info = update_file_stub.File.add(update_session_id=session_id,

 file_spec=file_spec)

 # 6 - Use HTTP library to upload the file to the library item.

 upload_uri = file_info.upload_endpoint.uri

 file_name = “/updates/esxi/esxi_patch.iso”

 host = urlparse.urlsplit(upload_uri)

 connection = httplib.HTTPConnection(host.netloc)

 with open(file_name, “rb”) as f :

 connection.request(“PUT”, upload_uri, f)

 # 7 - Commit the updates.

 library_item_service.UpdateSession.complete(session_id)

 finally :

 # 8 - Delete the session.

 library_item_service.UpdateSession.delete(session_id)

Upload a File from a URL to a Library Item

You can upload different types of files from a local system to a library item that you want to use
in the vSphere Automationenvironment.

Prerequisites

n Create an empty library item. See Create an Empty Library Item.

n Verify that you have access to the UpdateSession and File services.

Procedure

1 Create an UpdateSessionModel instance to track the changes that you make to the library item.

2 Create an update session by using the UpdateSession service.

3 Create a file specification to describe the upload method and other properties of the file to
be uploaded.

4 Specify the location of the file to be uploaded by creating a TransferEndpoint instance.

5 Add the file source endpoint to the file specification.

6 Create a request for changing the item by using the configured file specification.

7 Complete the update session to apply the changes to the library item.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 49

Python Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on
the code in the cls_api_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create a new library item to hold the uploaded file.

item_model = library_client.ItemModel()

item_model.name = ’ESXi patches’

item_model.description = ’ESXi security patches’

item_model.type = ’iso’

item_model.library_id = my_library_id

idem_token = str(uuid.uuid4())

item_stub = library_client.Item(my_stub_config)

item_id = item_stub.create(create_spec=item_model, client_token=idem_token)

2 - Create an UpdateSessionModel instance to track the changes you make to the item.

update_session_model = item_client.UpdateSessionModel()

update_session_model.library_item_id = item_id

3 - Create an update session from the model.

idem_token = str(uuid.uuid4())

update_session_stub = update_session_client.UpdateSession(my_stub_config)

session_id = update_session_stub.create(create_spec=update_session_model, client_token=idem_token)

try :

 # 4 - Create a new AddSpec instance to describe the properties of the file to be uploaded.

 file_spec = update_session_client.AddSpec()

 file_spec.name = ’ESXi patch’

 file_spec.source_type = update_session_client.File.SourceType.PULL

 # 5 - Specify the location from which the file is to be uploadod to the library item.

 endpoint = item_client.TransferEndpoint()

 endpoint.uri = ’http://www.example.com/patches_ESXi65/ESXi_patch.iso’

 file_spec.source_endpoint = endpoint

 # 6 - Link the file specification to the update session.

 update_file_stub = update_session_client.File(my_stub_config)

 update_file_stub.File.add(update_session_id=session_id, file_spec=file_spec)

 # 7 - Mark session as completed, to initiate the asynchronous transfer.

 update_session_stub.complete(session_id)

Download Files to a Local System from a Library Item

You might want to download files to a local system from a library item and then make changes to
the files before you use them.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 50

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Procedure

1 Create a download session model to specify the item, which contains the file that you want to
download.

2 Access the File service and retrieve the file that you want to export to your system within
the new download session.

3 Prepare the files that you want to download and wait until the files are in the prepared state.

4 Retrieve the download endpoint URI of the files.

5 Download the files with an HTTP GET request.

6 Delete the download session after all files are downloaded.

Python Example of Downloading Files from a Library Item to Your Local System

This example uses the code in the cls_api_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create a new download session model.

download_session_model = item_client.DownloadSessionModel()

download_session_model.library_item_id = my_library_item_id

download_session_stub = item_client.DownloadSession(my_stub_config)

idem_token = str(uuid.uuid4())

download_session_id = download_session_stub.create(create_spec=download_session_model,

client_token=idem_token)

2 - Access the File service and retrieve the files you want to export.

download_session_file_stub = download_session_client.File(my_stub_config)

file_infos = download_session_file_stub.list(download_session_id)

for file_info in file_infos :

 download_session_file_stub.prepare(download_session_id, file_info.name)

3 - Wait until the file is in the prepared state before downloading.

 download_info = download_session_file_stub.get(download_session_id, file_info.name)

 while (DownloadSessionFile.PrepareStatus.PREPARED != download_info.status) :

 time.sleep(30)

4 - Download the file with an HTTP GET request.

 response = urllib2.urlopen(download_info.download_endpoint.uri)

 file_path = os.path.join(my_directory, file_info.name)

 with open(file_path, ’wb’) as f :

 f.write(response.read())

5 - Delete the download session after all files are downloaded.

download_session_stub.delete(download_session_id)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 51

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Synchronizing a Library Item in a Subscribed Content Library

The items in a subscribed library have features that are distinct from the items in a local library.
Synchronizing the content and the metadata of an item in a subscribed library depends on the
synchronization mechanism of the subscribed library.

Table 6-2. Options for Synchronizing a Library Item

Synchronization Type of the Subscribed
Library Description

Synchronized on demand If the subscribed library is synchronized on demand, you can use the
sync method on the SubscribedItem service and pass as arguments
the library item ID and true. When you perform the task, both the
item metadata and the content are synchronized. To synchronize
only the metadata of the item, pass the library ID and false as
arguments to the method.

Not synchronized on demand If the subscribed library is not synchronized on demand, you can use
the sync method on the SubscribedItem service and pass as argument
the item ID. In this case, the content of the item is always
synchronized and the Boolean value is ignored when the call is
executed.

Synchronized automatically If the subscribed library is synchronized automatically, you can also
use the sync method to force the synchronization of an item. Method
execution depends on whether the subscribed library is synchronized
on demand.

Removing the Content of a Library Item

You can remove the content from a library item to free space on your storage.

If you create a subscribed library with the option to synchronize library content on demand, only
the metadata for the library items is stored. When you want to use the items in the library, you
must force synchronization on the items to download their content. When you no longer need
the files in an item, you can remove the cached content of the library item and free storage
space. To achieve this task use the evict function of the SubscribedItem object.

Deleting a Library Item

You can remove a library item from a local library when you no longer need it.

To remove a library item from a library, you can call the delete method on the Item object and
pass the library item ID as an argument. The item content is asynchronously removed from the
storage.

You cannot remove items from a subscribed library. If you remove an item from a local library,
the item is removed from the subscribed library when you perform a synchronization task on the
subscribed library item.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 52

Content Library Support for OVF
Packages 7
Open Virtualization Format (OVF) is an industry standard that describes metadata about a virtual
machine image in an XML format. An OVF package includes an XML descriptor file and optionally
disk images, resource files (such as ISO files), manifest files, and certificate files.

With the vSphere Automation API, you can use the virtual machine (VM) and vApp templates
from an OVF package in a content library to deploy VMs and virtual appliances on hosts,
resource pools, and clusters. You can also use the API to create OVF packages in content
libraries from virtual appliances and VMs on hosts, resource pools, and clusters.

When you create library items to store OVF packages, you must set the item type to ovf. You
can use the objects and methods provided by the Content Library API to manage OVF packages.
To comply with the specific standards of the OVF packages, the vSphere Automation API
provides the LibraryItem class.

This chapter includes the following topics:

n Using the Content Library Service to Handle OVF Packages

n Using the LibraryItem Service to Execute OVF-Specific Tasks

Using the Content Library Service to Handle OVF Packages

You can upload an OVF package to a library item by using the UpdateSession interface. The
location of the OVF package determines whether you can pull the content from a URL or push
the content directly to a content library.

For information about uploading content to library items, see Upload a File from a Local System
to a Library Item and Upload a File from a URL to a Library Item.

To download the files that are included in an OVF package to your local file system, use the
DownloadSession interface. For more information, see Download Files to a Local System from a
Library Item .

Upload an OVF Package from a URL to a Library Item

You can upload an OVF package from a Web server to a library item.

VMware, Inc. 53

Procedure

1 Create an empty library item.

2 Create an update session object.

3 Create an AddSpec object to describe the properties and the upload location of the descriptor
file of the OVF package.

4 Link the AddSpec object to the update session.

All files that are included in the OVF package are automatically uploaded.

5 Complete the asynchronous transfer.

Python Example of Uploading an OVF Package from a URL to a Library Item

This example is based on the ovf_import_export.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create a empty library item to describe the virtual machine.

item_model = library_client.ItemModel()

item_model.name = “ubuntu-vm”

item_model.description = “ubuntu 7.0”

item_model.library_id = my_library_id

item_model.type = “ovf”

client_token = str(uuid.uuid4())

item_stub = library_client.Item(my_stub_config)

item_id = item_stub.create(create_spec=item_model,

client_token=client_token)

2 - Create an update session.

update_session_model = item_client.UpdateSessionModel()

update_session_model.library_item_id = item_id

client_token = str(uuid.uuid4())

update_session_stub = update_session_client.UpdateSession(my_stub_config)

session_id = update_session_stub.create(create_spec=update_session_model,

client_token=client_token)

3 - Create a file specification for the OVF envelope file.

file_spec = update_session_client.AddSpec()

file_spec.name = “ubuntu.ovf”

file_spec.source_type = File.SourceType.PULL

endpoint = item_client.TransferEndpoint()

endpoint.uri = “http://www.example.com/images/ubuntu.ovf”

file_spec.source_endpoint = endpoint

4 - Link the file specification to the update session.

update_file_stub = update_session_client.File(my_stub_config)

update_file_stub.File.add(update_session_id=session_id,

file_spec=file_spec)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 54

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

5 - Initiate the asynchronous transfer.

update_session_stub.complete(session_id)

Upload an OVF Package from a Local File System to a Library Item

You can upload an OVF package from a local file system. This procedure describes how to use
the AddSpec object after you have created a library item and initiated an update session.

Procedure

1 Create a library item.

2 Create an update session.

3 Create an AddSpec object to describe the properties and the upload location of the descriptor
file of the OVF package.

4 Link the AddSpec object to the update session.

5 Create an AddSpec object for each VMDK file included in the OVF package.

6 Add all AddSpec objects to the update session.

Steps 5 and 6 must be repeated for each VMDK file included in the OVF package.

7 Initiate the upload operation.

8 Complete the update session.

9 Delete the session.

Python Example of Uploading an OVF Package to a Library Item from Your
Local File System

This example is based on the ovf_import_export.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create an empty library item to describe the VM/VApp.

item_model = library_client.ItemModel()

item_model.name = “ubuntu-vm”

item_model.description = “ubuntu 7.0”

item_model.library_id = my_library_id

item_model.type = “ovf”

client_token = str(uuid.uuid4())

item_stub = library_client.Item(my_stub_config)

item_id = item_stub.create(create_spec=item_model, client_token=client_token)

2 - Create an update session.

update_session_model = item_client.UpdateSessionModel()

update_session_model.library_item_id = item_id

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 55

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

client_token = str(uuid.uuid4())

update_session_stub = update_session_client.UpdateSession(my_stub_config)

session_id = update_session_stub.create(create_spec=update_session_model, client_token=client_token)

try :

 # 3 - Create a file spec for the OVF envelope file.

 file_spec = update_session_client.AddSpec()

 file_spec.name = “ubuntu.ovf”

 file_spec.source_type = update_session_client.File.SourceType.PUSH

 # 4 - Link the OVF file spec to the update session.

 update_file_stub = update_session_client.File(my_stub_config)

 file_info = update_file_stub.File.add(update_session_id=session_id, file_spec=file_spec)

 upload_uri = file_info.upload_endpoint.uri

 # 5 - Use HTTP library to push the file, out of band.

 file_name = “/medias/vms/ubuntu.ovf”

 host = urlparse.urlsplit(upload_uri)

 connection = httplib.HTTPConnection(host.netloc)

 with open(file_name, “rb”) as f :

 connection.request(“PUT”, upload_uri, f)

 # 6 - Create a file spec for the VMDK file.

 file_spec = update_session_client.AddSpec()

 file_spec.name = “ubuntu_disk.vmdk”

 file_spec.source_type = File.SourceType.PUSH

 # 7 - Add the VMDK file spec to the update session.

 file_info = update_file_stub.File.add(update_session_id=session_id, file_spec=file_spec)

 upload_uri = file_info.upload_endpoint().uri

 # 8 - Use HTTP library to push the file.

 file_name = “/medias/storage/ubuntu_disk.vmdk”

 host = urlparse.urlsplit(upload_uri)

 connection = httplib.HTTPConnection(host.netloc)

 with open(file_name, “rb”) as f :

 connection.request(“PUT”, upload_uri, f)

 # 9 - Commit the updates.

 update_session_stub.complete(session_id)

finally :

 # 10 - Delete the session.

 update_session_stub.delete(session_id)

Using the LibraryItem Service to Execute OVF-Specific
Tasks

You can deploy virtual machines and vApps on hosts, clusters, and resource pools in your
environment. You use the VM templates and vApp templates from an OVF package that is stored
as a content library item.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 56

With the vSphere Automation API, you can use the LibraryItem service to deploy virtual
machines and virtual applications from library items that contain OVF packages. You can also use
the LibraryItem vSphere Automation service to create library items from existing virtual machines
and virtual appliances.

Deploy a Virtual Machine or Virtual Appliance from an OVF Package
in a Content Library

You can use the LibraryItem service to deploy a virtual machine or virtual appliance on a host,
cluster, or resource pool from a library item.

Procedure

1 Create a DeploymentTarget instance to specify the deployment location of the virtual machine
or virtual appliance.

2 Instantiate the ResourcePoolDeploymentSpec class to define all necessary parameters for the
deployment operation.

For example, you can assign a name for the deployed virtual machine or virtual appliance,
and accept the End User License Agreements (EULAs) to complete the deployment
successfully.

3 (Optional) Retrieve information from the descriptor file of the OVF package and use the
information during the OVF package deployment.

4 Invoke the deploy method on the LibraryItem service.

5 Verify the outcome of the deployment operation.

Python Example of Deploying a Virtual Machine from a Library Item on a
Resource Pool

This example is based on the deploy_ovf_template.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Create a VM deployment specification to accept any network resource.

deployment_spec = ovf_client.LibraryItem.ResourcePoolDeploymentSpec()

deployment_spec.accept_all_eula = True

Create deployment target spec to accept any resource pool.

target_spec = ovf_client.LibraryItem.DeploymentTarget()

Initiate synchronous deployment operation.

item_stub = ovf_client.LibraryItem(my_stub_config)

result = item_stub.deploy(my_library_item_id,

 target_spec,

 deployment_spec,

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 57

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 client_token=str(uuid.uuid4())

Verify deployment status.

print("Resource Type={} (ID={}) status:".format(result.resource_id.type, result.resource_id.id))

if result.succeeded == True :

 print("Resource instantiated.”)

else :

 print("Instantiation failed.")

if result.error is not None :

 for error in result.error.errors :

 print("Error {}".format(error.message))

 if len(result.error.warnings) > 0 :

 print("Warnings:")

 for warning in result.error.warnings :

 print("{}".format(warning.message))

 if len(result.error.information) > 0 :

 print("Messages:")

 for info in result.error.information :

 for message in info.messages :

 print("{}".format(message))

Create an OVF Package in a Content Library from a Virtual Machine

You can create library items from existing virtual machines or virtual appliances. Use those library
items later to deploy virtual machines and virtual appliances on hosts and clusters in the vSphere
Automation environment.

Procedure

1 Create a DeployableIdentity instance to specify the source virtual machine or virtual appliance
to be captured in an OVF package.

2 Create a CreateTarget instance to identify the content library where the OVF package is
stored.

3 Create a CreateSpec instance to specify the properties of the OVF package.

4 Initiate a synchronous create operation by invoking the create function of the LibraryItem
service.

5 Verify the results of the create operation.

Python Example of Creating an OVF Package in a Content Library from a Virtual
Machine

This example shows how to capture a virtual machine in an OVF package and store the files in a
new library item in a specified library.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

Specify the resource to be captured.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 58

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

deployable_identity = ovf_client.LibraryItem.DeployableIdentity();

deployable_identity.type = “VirtualMachine”

deployable_identity.id = “vm-32”

Create a target spec to identify a library to hold the new item.

create_target = ovf_client.LibraryItem.CreateTarget()

create_target.library_id = my_library_id

Specify OVF properties.

create_spec = ovf_client.LibraryItem.CreateSpec()

create_spec.name = “snap-32”

create_spec.description = “Snapshot of VM-32”

Initiate synchronous capture operation.

lib_item_stub = ovf_client.LibraryItem(my_stub_config)

client_token = str(uuid.uuid4())

result = lib_item_stub.create(source=deployable_identity,

 target=create_target,

 create_spec=create_spec,

 client_token=client_token)

Verify capture status.

print("Resource Type={} (ID={}) status:".format(deployable_identity.type, deployable_identity.id))

if result.succeeded == True :

 print("Resource captured.”)

else :

 print("Capture failed.")

if result.error is not None :

 for error in result.error.errors :

 print("Error {}".format(error.message))

 if len(result.error.warnings) > 0 :

 print("Warnings:")

 for warning in result.error.warnings :

 print("{}".format(warning.message))

 if len(result.error.information) > 0 :

 print("Messages:")

 for info in result.error.information :

 for message in info.messages :

 print("{}".format(message))

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 59

Tagging Service 8
The vSphere Automation Tagging Service supports the definition of tags that you can associate
with vSphere objects or vSphere Automation resources. vSphere has a tagging feature but no
public API to manage tags. With the vSphere Automation SDK, you can manage tags
programmatically.

For example, to tag your VMs by guest operating system type, you might create a category
called operating system, and specify that it applies to VMs only. You might also specify that only
a single tag can be applied to a VM at any time. The tags in this category might be Windows,
Linux, and Mac OS.

n Creating Tags

When you create a tag, you create a tag category and create a tag under the category.
After you create the tag, you can associate the tag with an object.

n Creating Tag Associations

After you create a tag category and create a tag within the category, you can associate the
tag with a vSphere managed object or a vSphere Automation resource. An association is a
simple link that contains no data of its own. You can enumerate objects that are attached to
a tag or tags that are attached to an object.

n Updating a Tag

To update a tag, you must create an update spec for the tag. In the update spec, you set
values for the fields to be changed, and omit values for the other fields. When you do an
update operation using the update spec, only the fields that contain values are changed.

Creating Tags

When you create a tag, you create a tag category and create a tag under the category. After
you create the tag, you can associate the tag with an object.

VMware, Inc. 60

Tags and categories have global scope. The Platform Services Controller stores tags and
categories makes them available to any vCenter Server system that is registered with the
Platform Services Controller.

n Creating a Tag Category

You create tags in the context of a tag category. You must create a category before you
can add tags within that category.

n Creating a Tag

After you create a tag category, you can create tags within that category

Creating a Tag Category

You create tags in the context of a tag category. You must create a category before you can add
tags within that category.

A tag category has the following properties:

n name

n description

n cardinality, or how many tags it can contain

n the types of elements to which the tags can be assigned

You can associate tags with both vSphere API managed objects and VMware vSphere
Automation API resources.

Python Example of Creating a Tag Category

This example is based on code in the tagging_workflow.py sample file.

The category create() function returns an identifier that you use when you create a tag for that
category. The empty set for the associable types indicates that any object type can be
associated with a tag in this category.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

category_stub = tagging_client.Category(my_stub_config)

Set up a tag category create spec.

tc_create_spec = category_stub.CreateSpec(name = ‘favorites’,

 description = ‘My favorite virtual machines’,

 cardinality = CategoryModel.Cardinality.MULTIPLE,

 associable_types = set())

Create the tag category.

fav_category_id = category_stub.create(create_spec)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 61

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Creating a Tag

After you create a tag category, you can create tags within that category

A tag has the following properties:

n name

n description

n category ID

Python Example of Creating a Tag

This example is based on code in the tagging_workflow.py sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification
references the category identifier that was returned from the category create operation. Use the
returned tag identifier for subsequent operations on the tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

Set up a tag create spec.

tag_create_spec = tag_stub.CreateSpec(name=’red’,

 description=’My favorite color’,

 category_id=fav_category_id)

Create the tag.

tag_stub = tagging_client.Tag(my_stub_config)

tag_id = tag_stub.create(create_spec)

Creating Tag Associations

After you create a tag category and create a tag within the category, you can associate the tag
with a vSphere managed object or a vSphere Automation resource. An association is a simple link
that contains no data of its own. You can enumerate objects that are attached to a tag or tags
that are attached to an object.

Tag associations are local to a vCenter Server instance. When you request a list of tag
associations from a vCenter Server system, it enumerates only the associations that it has stored.

When you associate a tag with an object, the object's type must match one of the associable
types specified for the category to which the tag belongs.

n Assign the Tag to a Content Library

After you create a tag, you can assign the tag to a vSphere Automation resource.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 62

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

n Assign a Tag to a Cluster

After you create a tag, you can assign the tag to a vSphere managed object. Tags make the
inventory objects in your virtual environment more sortable and searchable.

Assign the Tag to a Content Library

After you create a tag, you can assign the tag to a vSphere Automation resource.

Procedure

1 Construct a dynamic object identifier for the library.

The dynamic identifier includes the type and ID of the object.

2 Attach the tag to the content library.

Python Example of Assigning a Tag to a Content Library

This example is based on code in the tagging_workflow.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Create a dynamic type ID for the content library.

library_dynamic_id = DynamicID(type=Library.RESOURCE_TYPE,

 id=my_library.id)

2- Attach the tag to the ClusterComputeResource managed object.

tag_association_stub = tagging_client.TagAssociationStub(my_stub_config)

tag_association_stub.attach(tag_id,

 library_dynamic_id)

Assign a Tag to a Cluster

After you create a tag, you can assign the tag to a vSphere managed object. Tags make the
inventory objects in your virtual environment more sortable and searchable.

This procedure describes the steps for applying tag a to a cluster object in your inventory.

Prerequisites

Obtain the managed object identifier for the specified cluster.

To get the managed object identifier of the ClusterComputeResource, you must access vCenter
Server by using the vSphere Web Services API. For more information about how to access Web
Services, see Create a Web Services Session.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 63

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Procedure

1 Construct a dynamic object identifier for the cluster.

The dynamic identifier includes the type and ID of the managed object reference.

2 Attach the tag to the cluster.

Python Example of Assigning a Tag to a Cluster

This example is based on code in the tagging_workflow.py sample file.

This example is based on the information that is provided in .

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

1 - Determine the MOID of the ClusterComputeResource from its name.

cluster_object = get_obj(service_content,

 [vim.ClusterComputeResource],

 my_cluster_name)

cluster_moid = cluster_obj._GetMoId()

2 - Create a dynamic type ID for the cluster.

dynamic_id = DynamicID(type='ClusterComputeResource', id=cluster_moid)

3 - Attach the tag to the ClusterComputeResource managed object.

tag_association_stub = tagging_client.TagAssociation(my_stub_config)

tag_association_stub.attach(tag_id=tag_id,

 object_id=dynamic_id)

Updating a Tag

To update a tag, you must create an update spec for the tag. In the update spec, you set values
for the fields to be changed, and omit values for the other fields. When you do an update
operation using the update spec, only the fields that contain values are changed.

For example, you might use a timestamp in a tag description to identify a resource's last
reconfiguration. After reconfiguring the resource, you update the tag description to contain the
current time.

Python Example of Updating a Tag Description

This example is based on code in the tagging_workflow.py sample file.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 64

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

This example adds timestamp in a tag description to identify when a resource was last
reconfigured. The tag description is updated with the timestamp after the resources is
reconfigured.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

tag_stub = tagging_client.Tag(my_stub_config

1 - Format the current time.

date_time = time.strftime(‘%d/%m/%Y %H:%M:%S’)

description = ‘Server tag updated at ‘ + date_time

2 - Set up a tag update spec.

tag_update_spec = tag_stub.UpdateSpec()

tag_update_spec.description = description

3 - Apply the update spec to change the tag description.

tag_stub.update(tag_id, tag_update_spec)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 65

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Virtual Machine Configuration and
Operations 9
A virtual machine is a software computer that, like a physical computer, runs an operating system
and applications. The virtual machine consists of a set of specification and configuration files and
is backed by the physical resources of a host. Each virtual machine encapsulates a complete
computing environment and runs independently of the underlying hardware.

Starting with vSphere 6.5, you can configure virtual machine settings and perform power
operations through the vSphere Automation SDK for Python.

This chapter includes the following topics:

n Filtering Virtual Machines

n Create a Virtual Machine

n Configuring a Virtual Machine

n Performing Virtual Machine Power Operations

Filtering Virtual Machines

You can retrieve a list of virtual machines that match a specific filter or a group of up to one
thousand virtual machines available in a specific vCenter Server instance.

You can retrieve a list of up to one thousand virtual machine IDs for a single vCenter Server
instance by filtering them based on a specific requirement, such as a host, cluster, datacenter, or
resource pool on which the VMs are running.

Call the list methods of the VM service to retrieve only a list of the virtual machines that match
your specific criteria. The method takes as parameter the VMTypes.FilterSpec instance that you
can use to describe the virtual machine filter.

VMware, Inc. 66

Python Example of Filtering Virtual Machines

This example is based on the code in the vm_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

def get_vms(stub_config, vm_names):

 """Return identifiers of a list of vms"""

 vm_svc = VM(stub_config)

 vms = vm_svc.list(VM.FilterSpec(names=vm_names))

 if len(vms) == 0:

 print('No vm found')

 return None

 print("Found VMs '{}' ({})".format(vm_names, vms))

 return vms

Create a Virtual Machine

You can create a virtual machine by using the VM.create method. The method takes as parameter
a CreateSpec instance that allows you to specify the attributes of the virtual machine.

To create a virtual machine you must specify the virtual machine attributes by using the
CreateSpec class. For example, you can specify a name, boot options, networking, and memory
for the virtual machine. See Configuring a Virtual Machine.

All attributes are optional except the virtual machine placement information that you must
provide by using the PlacementSpec class. Use the virtual machine placement specification to set
the datastore, cluster, folder, host, or resource pool of the created virtual machine and make sure
that all these vSphere objects are located in the same data center in a vCenter Server instance.

For more information refer to the API Reference documentation inside the SDK.

Python Example of Creating a Basic Virtual Machine

This example is based on the code in the create_basic_vm.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

def create_basic_vm(stub_config, placement_spec, standard_network):

 """

 Create a basic VM.

 Using the provided PlacementSpec, create a VM with a selected Guest OS

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 67

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 and provided name.

 Create a VM with the following configuration:

 * Create 2 disks and specify one of them on scsi0:0 since it's the boot disk

 * Specify 1 ethernet adapter using a Standard Portgroup backing

 * Setup for PXE install by selecting network as first boot device

 Use guest and system provided defaults for most configuration settings.

 """

 guest_os = testbed.config['VM_GUESTOS']

 boot_disk = Disk.CreateSpec(type=Disk.HostBusAdapterType.SCSI,

 scsi=ScsiAddressSpec(bus=0, unit=0),

 new_vmdk=Disk.VmdkCreateSpec())

 data_disk = Disk.CreateSpec(new_vmdk=Disk.VmdkCreateSpec())

 nic = Ethernet.CreateSpec(

 start_connected=True,

 backing=Ethernet.BackingSpec(

 type=Ethernet.BackingType.STANDARD_PORTGROUP,

 network=standard_network))

 boot_device_order = [BootDevice.EntryCreateSpec(BootDevice.Type.ETHERNET),

 BootDevice.EntryCreateSpec(BootDevice.Type.DISK)]

 vm_create_spec = VM.CreateSpec(name=vm_name,

 guest_os=guest_os,

 placement=placement_spec,

 disks=[boot_disk, data_disk],

 nics=[nic],

 boot_devices=boot_device_order)

 print('\n# Example: create_basic_vm: Creating a VM using spec\n-----')

 print(pp(vm_create_spec))

 print('-----')

 vm_svc = VM(stub_config)

 vm = vm_svc.create(vm_create_spec)

 print("create_basic_vm: Created VM '{}' ({})".format(vm_name, vm))

 vm_info = vm_svc.get(vm)

 print('vm.get({}) -> {}'.format(vm, pp(vm_info)))

 return vm

...

Configuring a Virtual Machine

You can configure a virtual machine during creation. You can also reconfigure an existing virtual
machine by adding or changing the type of the storage controllers, configure the virtual disks,
boot options, CPU and memory information, and networks.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 68

Name and Placement

You specify the display name and the location of the virtual machine by using the CreateSpec and
PlacementSpec classes.

When you create your virtual machine, use the setName method of the CreateSpec class to pass as
argument the display name of the virtual machine.

You must create also a PlacementSpec instance that describes the location of the virtual machine
in regards to the resources of a given vCenter Server instance. Use the
setPlacement(PlacementSpec placement) method of the CreateSpec class to set the placement
information for the virtual machine. You can set one or all of the following vSphere resources:
datastore, cluster, folder, host, and resource pool.

Python Example of Configuring the Placement of a Virtual Machine

This example is based on the code in the vm_placement_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

def get_placement_spec_for_resource_pool(stub_config,

 datacenter_name,

 vm_folder_name,

 datastore_name):

 """

 Returns a VM placement spec for a resourcepool. Ensures that the

 vm folder and datastore are all in the same datacenter which is specified.

 """

 resource_pool = resource_pool_helper.get_resource_pool(stub_config,

 datacenter_name)

 folder = folder_helper.get_folder(stub_config,

 datacenter_name,

 vm_folder_name)

 datastore = datastore_helper.get_datastore(stub_config,

 datacenter_name,

 datastore_name)

 # Create the vm placement spec with the datastore, resource pool and vm

 # folder

 placement_spec = VM.PlacementSpec(folder=folder,

 resource_pool=resource_pool,

 datastore=datastore)

 print("get_placement_spec_for_resource_pool: Result is '{}'".

 format(placement_spec))

 return placement_spec

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 69

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

Boot Options

You can configure the boot options of a virtual machine by using the setBoot(CreateSpec boot)
method of the CreateSpec class.

The method takes as argument the BootTypes.CreateSpec class. You can select one of the
following settings when booting the virtual machine:

n Delay - Indicates a delay in milliseconds before starting the firmware boot process when the
virtual machine is powered on.

n Retry - Indicates whether the virtual machine automatically retries to boot after a failure.

n Retry delay - Indicates a delay in milliseconds before retrying the boot process after a failure.

n Enter setup mode - If set to true, indicates that the firmware boot process automatically
enters BIOS setup mode the next time the virtual machine boots. The virtual machine resets
this flag to false once it enters setup mode.

n EFI legacy boot - If set to true, indicates that the EFI legacy boot mode is used.

Python Example of Configuring the Boot Options

The following example is based on the code of the boot.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

"""

Demonstrates how to configure the settings used when booting a virtual machine.

Sample Prerequisites:

The sample needs an existing VM.

"""

vm = None

vm_name = None

stub_config = None

boot_svc = None

cleardata = False

orig_boot_info = None

...

def run():

 global vm

 vm = get_vm(stub_config, vm_name)

 if not vm:

 exit('Sample requires an existing vm with name ({}). '

 'Please create the vm first.'.format(vm_name))

 print("Using VM '{}' ({}) for Boot Sample".format(vm_name, vm))

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 70

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 # Create Boot stub used for making requests

 global boot_svc

 boot_svc = Boot(stub_config)

 print('\n# Example: Get current Boot configuration')

 boot_info = boot_svc.get(vm)

 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

 # Save current Boot info to verify that we have cleaned up properly

 global orig_boot_info

 orig_boot_info = boot_info

 print('\n# Example: Update firmware to EFI for Boot configuration')

 update_spec = Boot.UpdateSpec(type=Boot.Type.EFI)

 print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))

 boot_svc.update(vm, update_spec)

 boot_info = boot_svc.get(vm)

 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

 print('\n# Example: Update boot firmware to tell it to enter setup mode on '

 'next boot')

 update_spec = Boot.UpdateSpec(enter_setup_mode=True)

 print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))

 boot_svc.update(vm, update_spec)

 boot_info = boot_svc.get(vm)

 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

 print('\n# Example: Update boot firmware to introduce a delay in boot'

 ' process and to reboot')

 print('# automatically after a failure to boot. '

 '(delay=10000 ms, retry=True,')

 print('# retry_delay=30000 ms')

 update_spec = Boot.UpdateSpec(delay=10000,

 retry=True,

 retry_delay=30000)

 print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))

 boot_svc.update(vm, update_spec)

 boot_info = boot_svc.get(vm)

 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

...

Operating System

The guest operating system that you specify affects the supported devices and available number
of virtual CPUs.

You specify the guest operating system by using the setGuestOS(GuestOS guestOS) method of the
VMTypes.CreateSpec class. The GuestOS class defines the valid guest OS types that you can use to
configure a virtual machine.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 71

CPU and Memory

The CreateSpec class allows you to specify the CPU and memory configuration of a virtual
machine.

To change the CPU and memory configuration settings, use the CpuTypes.UpdateSpec and
MemoryTypes.UpdateSpec classes.

CPU Configuration

You can set the number of CPU cores in the virtual machine by using the setCount method of the
CpuTypes.UpdateSpec class. The supported range of CPU cores depends on the guest operating
system and virtual hardware version of the virtual machine. If you set
CpuTypes.Info.getHotAddEnabled() and CpuTypes.Info.getHotRemoveEnabled() to true, you allow
virtual processors to be added or removed from the virtual machine at runtime.

Memory Configuration

You can set the memory size of a virtual machine by using the setSizeMiB method of the
MemoryTypes.UpdateSpec class. The supported range of memory sizes depends on the configured
guest operating system and virtual hardware version of the virtual machine. If you set
MemoryTypes.UpdateSpec.setHotAddEnabled() to true while the virtual machine is not powered on,
you enable adding memory while the virtual machine is running.

Python Example of Configuring the CPU and Memory of a Virtual Machine

These examples are based on the code in the cpu.py and memory.py sample files.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

The following example shows how you can update the CPU configuration of a virtual machine.

...

vm = None

vm_name = None

stub_config = None

cpu_svc = None

cleardata = False

orig_cpu_info = None

...

 server, username, password, cleardata, skip_verification, vm_name = \

 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])

 stub_config = vapiconnect.connect(server,

 username,

 password,

 skip_verification)

...

def run():

 global vm

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 72

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 vm = get_vm(stub_config, vm_name)

 if not vm:

 exit('Sample requires an existing vm with name ({}). '

 'Please create the vm first.'.format(vm_name))

 print("Using VM '{}' ({}) for Cpu Sample".format(vm_name, vm))

 # Create CPU stub used for making requests

 global cpu_svc

 cpu_svc = Cpu(stub_config)

 # Get the current CPU configuration

 cpu_info = cpu_svc.get(vm)

 print('vm.hardware.Cpu.get({}) -> {}'.format(vm, pp(cpu_info)))

 # Save current CPU info to verify that we have cleaned up properly

 global orig_cpu_info

 orig_cpu_info = cpu_info

 # Update the number of CPU cores of the virtual machine

 update_spec = Cpu.UpdateSpec(count=2)

 print('vm.hardware.Cpu.update({}, {})'.format(vm, update_spec))

 cpu_svc.update(vm, update_spec)

 # Get the new CPU configuration

 cpu_info = cpu_svc.get(vm)

 print('vm.hardware.Cpu.get({}) -> {}'.format(vm, pp(cpu_info)))

 # Update the number of cores per socket and

 # enable adding CPUs while the virtual machine is running

 update_spec = Cpu.UpdateSpec(cores_per_socket=2, hot_add_enabled=True)

 print('vm.hardware.Cpu.update({}, {})'.format(vm, update_spec))

 cpu_svc.update(vm, update_spec)

...

The following example demonstrates how you can add memory to a running virtual machine.

...

vm = None

vm_name = None

stub_config = None

memory_svc = None

cleardata = False

orig_memory_info = None

...

 server, username, password, cleardata, skip_verification, vm_name = \

 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])

 stub_config = vapiconnect.connect(server,

 username,

 password,

 skip_verification)

...

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 73

 global vm

 vm = get_vm(stub_config, vm_name)

 if not vm:

 exit('Sample requires an existing vm with name ({}). '

 'Please create the vm first.'.format(vm_name))

 print("Using VM '{}' ({}) for Memory Sample".format(vm_name, vm))

 # Create Memory stub used for making requests

 global memory_svc

 memory_svc = Memory(stub_config)

 # Get the current Memory configuration

 memory_info = memory_svc.get(vm)

 print('vm.hardware.Memory.get({}) -> {}'.format(vm, pp(memory_info)))

 # Update the memory size of the virtual machine

 update_spec = Memory.UpdateSpec(size_mib=8 * 1024)

 print('vm.hardware.Memory.update({}, {})'.format(vm, update_spec))

 memory_svc.update(vm, update_spec)

 # Get the new Memory configuration

 memory_info = memory_svc.get(vm)

 print('vm.hardware.Memory.get({}) -> {}'.format(vm, pp(memory_info)))

 # Enable adding memory while the virtual machine is running

 update_spec = Memory.UpdateSpec(hot_add_enabled=True)

 print('vm.hardware.Memory.update({}, {})'.format(vm, update_spec))

 memory_svc.update(vm, update_spec)

...

Networks

You configure network settings so that a virtual machine can communicate with the host and with
other virtual machines. When you configure a virtual machine, you can add network adapters
(NICs) and specify the adapter type.

You can add virtual Ethernet adapters to a virtual machine by using the
VMTypes.CreateSpec.setNics method. Pass as argument a List of EthernetTypes.CreateSpec objects
that provide the configuration information of the created virtual Ethernet adapters. You can set
the MAC address type to EthernetTypes.MacAddressType.MANUAL,
EthernetTypes.MacAddressType.GENERATED, or EthernetTypes.MacAddressType.ASSIGNED. Select MANUAL
to specify the MAC address explicitly.

You can specify also the physical resources that back a virtual Ethernet adapter by using the
EthernetTypes.BackingSpec.setType method. The method takes as argument one of the following
types: EthernetTypes.BackingType.STANDARD_PORTGROUP, HOST_DEVICE, DISTRIBUTED_PORTGROUP, or
OPAQUE_NETWORK.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 74

Python Example of Configuring the Virtual Machine Network

This example is based on the code in the ethernet.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

vm = None

vm_name = None

stub_config = None

ethernet_svc = None

cleardata = False

nics_to_delete = []

orig_nic_summaries = None

...

 server, username, password, cleardata, skip_verification, vm_name = \

 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])

 stub_config = vapiconnect.connect(server,

 username,

 password,

 skip_verification)

 global vm

 vm = get_vm(stub_config, vm_name)

 if not vm:

 exit('Sample requires an existing vm with name ({}). '

 'Please create the vm first.'.format(vm_name))

 print("Using VM '{}' ({}) for Disk Sample".format(vm_name, vm))

 # Get standard portgroup to use as backing for sample

 standard_network = network_helper.get_standard_network_backing(

 stub_config,

 testbed.config['STDPORTGROUP_NAME'],

 testbed.config['VM_DATACENTER_NAME'])

 # Create Ethernet stub used for making requests

 global ethernet_svc

 ethernet_svc = Ethernet(stub_config)

 vm_power_svc = Power(stub_config)

 nic_summaries = ethernet_svc.list(vm=vm)

 # Save current list of Ethernet adapters to verify that we have cleaned

 # up properly

 global orig_nic_summaries

 orig_nic_summaries = nic_summaries

 global nics_to_delete

 # Create Ethernet Nic using STANDARD_PORTGROUP with the default settings

 nic_create_spec = Ethernet.CreateSpec(

 backing=Ethernet.BackingSpec(

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 75

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 type=Ethernet.BackingType.STANDARD_PORTGROUP,

 network=standard_network))

 nic = ethernet_svc.create(vm, nic_create_spec)

 nics_to_delete.append(nic)

 nic_info = ethernet_svc.get(vm, nic)

 # Create Ethernet Nic by using STANDARD_PORTGROUP

 nic_create_spec = Ethernet.CreateSpec(

 start_connected=True,

 allow_guest_control=True,

 mac_type=Ethernet.MacAddressType.MANUAL,

 mac_address='01:23:45:67:89:10',

 wake_on_lan_enabled=True,

 backing=Ethernet.BackingSpec(

 type=Ethernet.BackingType.STANDARD_PORTGROUP,

 network=standard_network))

 nic = ethernet_svc.create(vm, nic_create_spec)

 nics_to_delete.append(nic)

 nic_info = ethernet_svc.get(vm, nic)

 # Update the Ethernet NIC with a different backing

 nic_update_spec = Ethernet.UpdateSpec(

 backing=Ethernet.BackingSpec(

 type=Ethernet.BackingType.STANDARD_PORTGROUP,

 network=standard_network))

 ethernet_svc.update(vm, nic, nic_update_spec)

 nic_info = ethernet_svc.get(vm, nic)

 # Update the Ethernet NIC configuration

 nic_update_spec = Ethernet.UpdateSpec(

 wake_on_lan_enabled=False,

 mac_type=Ethernet.MacAddressType.GENERATED,

 start_connected=False,

 allow_guest_control=False)

 ethernet_svc.update(vm, nic, nic_update_spec)

 nic_info = ethernet_svc.get(vm, nic)

 # Powering on the VM to connect the virtual Ethernet adapter to its backing

 vm_power_svc.start(vm)

 nic_info = ethernet_svc.get(vm, nic)

 # Connect the Ethernet NIC after powering on the VM

 ethernet_svc.connect(vm, nic)

 # Disconnect the Ethernet NIC while the VM is powered on

 ethernet_svc.disconnect(vm, nic)

...

Performing Virtual Machine Power Operations

You can start, stop, reboot, and suspend virtual machines by using the methods of the Power
class.

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 76

A virtual machine can have one of the following power states:

n PowerTypes.State.POWERED_ON - Indicates that the virtual machine is running. If a guest
operating system is not currently installed, you can perform the guest OS installation in the
same way as for a physical machine.

n PowerTypes.State.POWERED_OFF - Indicates that the virtual machine is not running. You can still
update the software on the physical disk of the virtual machine, which is impossible for
physical machines.

n PowerTypes.State.SUSPENDED - Indicates that the virtual machine is paused and can be resumed.
This state is the same as when a physical machine is in standby or hibernate state.

To perform a power operation on a virtual machine, you can use one of the methods of the Power
class. Before you call one of the methods to change the power state of a virtual machine, you
must first check the current state of the virtual machine by using the Power.get method. Pass as
argument the virtual machine identifier.

Following is a list if the power operations:

n Power.start - Powers on a powered off or suspended virtual machine. The method takes as
argument the virtual machine identifier.

n Power.stop - Powers off a powered on or suspended virtual machine. The method takes as
argument the virtual machine identifier.

n Power.suspend - Pauses all virtual machine activity for a powered on virtual machine. The
method takes as argument the virtual machine identifier.

n Power.reset - Shuts down and restarts the guest operating system without powering off the
virtual machine. Although this method functions as a stop method that is followed by a start
method, the two operations are atomic with respect to other clients, meaning that other
power operations cannot be performed until the reset method completes.

Python Example of Powering On a Virtual Machine

This example is based on the code in the ethernet.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation
SDK Python samples at GitHub.

...

 vm = None

 vm_name = None

 stub_config = None

 server, username, password, cleardata, skip_verification, vm_name = \

 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])

 stub_config = vapiconnect.connect(server, username, password, skip_verification)

 # Get the virtual machine ID

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 77

https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples
https://github.com/vmware/vsphere-automation-sdk-python/tree/master/samples

 vm = get_vm(stub_config, vm_name)

 # Create the Power stub for running power operations on virtual machines

 vm_power_svc = Power(stub_config)

 vm_power_svc.start(vm)

VMware vSphere Automation SDK for Python Programming Guide

VMware, Inc. 78

	VMware vSphere Automation SDK for Python Programming Guide
	Contents
	About VMware vSphere Automation SDK for Python Programming Guide
	Updated Information
	Introduction to the vSphere Automation SDKs
	vSphere Automation SDKs Overview
	Supported Programming Languages

	Components of the vSphere Automation Virtualization Layer
	Components and Services of a Virtual Environment
	vSphere Deployment Configurations

	Retrieving Service Endpoints
	Filtering for Predefined Service Endpoints
	Filter Parameters for Predefined Service Endpoints
	Connect to the Lookup Service and Retrieve the Service Registration Object
	Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object

	Retrieve Service Endpoints on vCenter Server Instances
	Python Example of Retrieving a Service Endpoint on a vCenter Server Instance

	Retrieve a vCenter Server ID by Using the Lookup Service
	Python Example of Retrieving a vCenter Server ID by Using the Lookup Service

	Retrieve a vSphere Automation Endpoint on a vCenter Server Instance
	Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

	Authentication Mechanisms
	Retrieve a SAML Token
	Python Example of Retrieving a SAML Token

	Create a vSphere Automation Session with a SAML Token
	Python Example of Creating a vSphere Automation API Session with a SAML Token

	Create a vSphere Automation Session with User Credentials
	Create a Web Services Session
	Python Example of Creating a Web Services Session

	Accessing vSphere Automation Services
	Access a vSphere Automation Service

	Content Library Service
	Content Library Overview
	Content Library Types
	Content Library Items
	Content Library Storage
	Python Example of Storing Library Content on a Datastore

	Querying Content Libraries
	Listing All Content Libraries
	Python Example of Retrieving a List of All Content Libraries

	Listing Content Libraries of a Specific Type
	List Content Libraries by Using Specific Search Criteria
	Python Example of Retrieving a List of All Local Libraries with a Specific Name

	Content Libraries
	Create a Local Content Library
	Python Example of Creating a Local Content Library

	Publish an Existing Content Library
	Python Example of Publishing an Existing Content Library

	Publish a Library at the Time of Creation
	Subscribe to a Content Library
	Python Example of Subscribing to a Published Library

	Synchronize a Subscribed Content Library
	Editing the Settings of a Content Library
	Removing the Content of a Subscribed Library
	Delete a Content Library

	Library Items
	Create an Empty Library Item
	Python Example of Creating a Library Item

	Querying Library Items
	List Library Items
	List Library Items That Match Specific Criteria

	Edit the Settings of a Library Item
	Python Example of Changing the Settings for a Library Item

	Upload a File from a Local System to a Library Item
	Python Example of Uploading Files to a Library Item from a Local System

	Upload a File from a URL to a Library Item
	Python Example of Uploading a File from a URL to a Library Item

	Download Files to a Local System from a Library Item
	Python Example of Downloading Files from a Library Item to Your Local System

	Synchronizing a Library Item in a Subscribed Content Library
	Removing the Content of a Library Item
	Deleting a Library Item

	Content Library Support for OVF Packages
	Using the Content Library Service to Handle OVF Packages
	Upload an OVF Package from a URL to a Library Item
	Python Example of Uploading an OVF Package from a URL to a Library Item

	Upload an OVF Package from a Local File System to a Library Item
	Python Example of Uploading an OVF Package to a Library Item from Your Local File System

	Using the LibraryItem Service to Execute OVF-Specific Tasks
	Deploy a Virtual Machine or Virtual Appliance from an OVF Package in a Content Library
	Python Example of Deploying a Virtual Machine from a Library Item on a Resource Pool

	Create an OVF Package in a Content Library from a Virtual Machine
	Python Example of Creating an OVF Package in a Content Library from a Virtual Machine

	Tagging Service
	Creating Tags
	Creating a Tag Category
	Python Example of Creating a Tag Category

	Creating a Tag
	Python Example of Creating a Tag

	Creating Tag Associations
	Assign the Tag to a Content Library
	Python Example of Assigning a Tag to a Content Library

	Assign a Tag to a Cluster
	Python Example of Assigning a Tag to a Cluster

	Updating a Tag
	Python Example of Updating a Tag Description

	Virtual Machine Configuration and Operations
	Filtering Virtual Machines
	Python Example of Filtering Virtual Machines

	Create a Virtual Machine
	Python Example of Creating a Basic Virtual Machine

	Configuring a Virtual Machine
	Name and Placement
	Python Example of Configuring the Placement of a Virtual Machine

	Boot Options
	Python Example of Configuring the Boot Options

	Operating System
	CPU and Memory
	Python Example of Configuring the CPU and Memory of a Virtual Machine

	Networks
	Python Example of Configuring the Virtual Machine Network

	Performing Virtual Machine Power Operations
	Python Example of Powering On a Virtual Machine

